|
|
镍基单晶高温合金的研发进展 |
张健1( ), 王莉1, 谢光1, 王栋1, 申健1, 卢玉章1, 黄亚奇1, 李亚微1,2 |
1中国科学院金属研究所 沈阳 110016 2中国科学技术大学 材料科学与工程学院 沈阳 110016 |
|
Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys |
ZHANG Jian1( ), WANG Li1, XIE Guang1, WANG Dong1, SHEN Jian1, LU Yuzhang1, HUANG Yaqi1, LI Yawei1,2 |
1Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
Jian ZHANG,
Li WANG,
Guang XIE,
Dong WANG,
Jian SHEN,
Yuzhang LU,
Yaqi HUANG,
Yawei LI.
Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. Acta Metall Sin, 2023, 59(9): 1109-1124.
1 |
Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2019, 55: 1077
|
1 |
张 健, 王 莉, 王 栋 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55: 1077
|
2 |
Yokokawa T, Harada H, Kawagishi K, et al. Advanced alloy design program and improvement of sixth-generation Ni-base single crystal superalloy TMS-238 [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 122
|
3 |
Petrushin N V, Elyutin E S, Visik E M, et al. Development of a single-crystal fifth-generation nickel superalloy [J]. Russ. Metall., 2017, 2017: 936
doi: 10.1134/S0036029517110118
|
4 |
Antonov S, Zheng Y F, Sosa J M, et al. Plasticity assisted redistribution of solutes leading to topological inversion during creep of superalloys [J]. Scr. Mater., 2020, 186: 287
doi: 10.1016/j.scriptamat.2020.05.004
|
5 |
Walston W S, O'Hara K S, Ross E W, et al. René N6: Third generation single crystal superalloy [A]. Superalloys 1996 [C]. Warrendale, PA: TMS, 1996: 27
|
6 |
Harris K, Erickson G L, Sikkenga S L, et al. Development of the rhenium containing superalloys CMSX-4® & CM 186 LC® for single crystal blade and directionally solidified vane applications in advanced turbine engines [A]. Superalloys 1992 [C]. Warrendale, PA: TMS, 1992: 297
|
7 |
Hino T, Kobayashi T, Koizumi Y, et al. Development of a new single crystal superalloy for industrial gas turbines [A]. Superalloys 2000 [C]. Warrendale, PA: TMS, 2000: 729
|
8 |
Harada H. High temperature materials for gas turbines: The present and future [A]. Proceedings of the International Gas Turbine Congress 2003 [C]. Tokyo, Japan, 2003: 1
|
9 |
Koizumi Y, Kobayashi T, Yokokawa T, et al. Development of next-generation Ni-base single crystal superalloys [A]. Superalloys 2004 [C]. Warrendale, PA: TMS, 2004: 35
|
10 |
Koizumi Y, Kawagishi K, Yokokawa T, et al. Hot corrosion and creep properties of Ni-base single-crystal superalloys [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 747
|
11 |
Xia W S, Zhao X B, Yue L, et al. A review of composition evolution in Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 44: 76
doi: 10.1016/j.jmst.2020.01.026
|
12 |
van Sluytman J S, Moceri C J, Pollock T M. A Pt-modified Ni-base superalloy with high temperature precipitate stability [J]. Mater. Sci. Eng., 2015, A639: 747
|
13 |
Rame J, Utada S, Ormastroni L M B, et al. Platinum-containing new generation nickel-based superalloy for single crystalline applications [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 71
|
14 |
Luo L, Ru Y, Ma Y, et al. Design for 1200oC creep properties of Ni-based single crystal superalloys: Effect of γ'-forming elements and its microscopic mechanism [J]. Mater. Sci. Eng., 2022, A832: 142494
|
15 |
Ru Y, Hu B, Zhao W Y, et al. Topologically inverse microstructure in single-crystal superalloys: Microstructural stability and properties at ultrahigh temperature [J]. Mater. Res. Lett., 2021, 9: 497
doi: 10.1080/21663831.2021.1982785
|
16 |
Cheng Y, Zhao X B, Xia W S, et al. Effects of Mo addition on microstructure of a 4th generation Ni-based single crystal superalloy [J]. Prog. Nat. Sci.: Mater. Int., 2022, 32: 745
doi: 10.1016/j.pnsc.2022.10.001
|
17 |
Pan Q H, Zhao X B, Yue Q Z, et al. Effects of cobalt on solidification characteristics and as-cast microstructure of an advanced nickel-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2022, 20: 3074
|
18 |
Rame J, Caron P, Locq D, et al. Development of AGAT, a third-generation nickel-based superalloy for single crystal turbine blade applications [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 31
|
19 |
Zhao Y S, Zhang J, Luo Y S, et al. Improvement of grain boundary tolerance by minor additions of Hf and B in a second generation single crystal superalloy [J]. Acta Mater., 2019, 176: 109
doi: 10.1016/j.actamat.2019.06.054
|
20 |
Pedraza F, Troncy R, Pasquet A, et al. Critical hafnium content for extended lifetime of AM1 single crystal superalloy [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 781
|
21 |
Horie T, Kawagishi K, Takata Y, et al. Creep durability of Ni-base single crystal superalloy containing Pb impurity [J]. Metall. Mater. Trans., 2022, 53A: 2627
|
22 |
Zhang Z P. Effect of Re and ppm level S addition on the oxidation and hot corrosion behavior of Ni-base single crystal superalloys [D]. Shenyang: Shenyang University of Technology, 2019
|
22 |
张宗鹏. Re和ppm级S对镍基单晶高温合金氧化和热腐蚀行为的影响 [D]. 沈阳: 沈阳工业大学, 2019
|
23 |
Zhan X, Wang D, Zhang Z P, et al. Effect of trace sulfur on the hot corrosion resistance of Ni-base single crystal superalloy [J]. Corros. Sci., under review
|
24 |
Kawagishi K, Tabata C, Sugiyama T, et al. Suppression of sulfur segregation at scale/substrate interface for sixth-generation single-crystal Ni-base superalloy [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 798
|
25 |
Liu P, Huang H Y, Antonov S, et al. Machine learning assisted design of γ'-strengthened Co-base superalloys with multi-performance optimization [J]. npj Comput. Mater., 2020, 6: 62
doi: 10.1038/s41524-020-0334-5
|
26 |
Müller M, Schleifer F, Fleck M, et al. Consistent automatic evaluation of γ/γ' Ni-base superalloy microstructure parameters from micrographs and simulation data [R]. Bamberg, Bavaria: DGM, 2022
|
27 |
Forti M D, Burakovskaya A, Drautz R, et al. Machine learning TCP phases with domain knowledge of the interatomic bond [R]. Bamberg, Bavaria: DGM, 2022
|
28 |
Thome P, Richter A, Scholz F, et al. 3D dendrite growth in Ni-base SXs analyzed using microstructure informatics [R]. Bamberg, Bavaria: DGM, 2022
|
29 |
Liu Y, Wu J M, Wang Z C, et al. Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning [J]. Acta Mater., 2020, 195: 454
doi: 10.1016/j.actamat.2020.05.001
|
30 |
Xia W S, Zhao X B, Yue L, et al. Microstructural evolution and creep mechanisms in Ni-based single crystal superalloys: A review [J]. J. Alloys Compd., 2020, 819: 152954
doi: 10.1016/j.jallcom.2019.152954
|
31 |
Li Y F, Wang L, Zhang G, et al. Creep anisotropy of a 3rd generation nickel-base single crystal superalloy at 850oC [J]. Mater. Sci. Eng., 2019, A760: 26
|
32 |
Heep L, Bürger D, Bonnekoh C, et al. The effect of deviations from precise [001] tensile direction on creep of Ni-base single crystal superalloys [J]. Scr. Mater., 2022, 207: 114274
doi: 10.1016/j.scriptamat.2021.114274
|
33 |
Liu H, Wang X M, Liu P Y, et al. Experimental and chemo-mechanical analysis of hot corrosion influence on creep properties of DD6 single crystal superalloy in molten NaCl salt [J]. Eng. Fract. Mech., 2022, 260: 108194
doi: 10.1016/j.engfracmech.2021.108194
|
34 |
Zhang D X, He J Y, Liang J W. Anisotropic creep fracture mechanism and microstructural evolution in nickel-based single crystal specimen with a center film hole [J]. Theor. Appl. Fract. Mech., 2020, 108: 102680
doi: 10.1016/j.tafmec.2020.102680
|
35 |
Pei H Q, Wang J J, Li Z, et al. Oxidation behavior of recast layer of air-film hole machined by EDM technology of Ni-based single crystal blade and its effect on creep strength [J]. Surf. Coat. Technol., 2021, 419: 127285
doi: 10.1016/j.surfcoat.2021.127285
|
36 |
Epishin A I, Fedelich B, Viguier B, et al. Creep of single-crystals of nickel-base γ-alloy at temperatures between 1150oC and 1288oC [J]. Mater. Sci. Eng., 2021, A825: 141880
|
37 |
Qi D Q, Wang L, Zhao P, et al. Facilitating effect of interfacial grooves on the rafting of nickel-based single crystal superalloy at high temperature [J]. Scr. Mater., 2019, 167: 71
doi: 10.1016/j.scriptamat.2019.04.001
|
38 |
Li Y W, Wang L, He Y F, et al. Role of interfacial dislocation networks during secondary creep at elevated temperatures in a single crystal Ni-based superalloy [J]. Scr. Mater., 2022, 217: 114769
doi: 10.1016/j.scriptamat.2022.114769
|
39 |
Li Y M, Wang X G, Tan Z H, et al. On dislocation networks and superdislocations in Re-containing nickel-based SX superalloy under different creep conditions [J]. Intermetallics, 2022, 148: 107646
doi: 10.1016/j.intermet.2022.107646
|
40 |
Li Y W, Wang L, Zhang G, et al. On the role of topological inversion and dislocation structures during tertiary creep at elevated temperatures for a Ni-based single crystal superalloy [J]. Mater. Sci. Eng., 2021, A809: 140982
|
41 |
Ormastroni L M B, Utada S, Rame J, et al. Tensile, low cycle fatigue, and very high cycle fatigue characterizations of advanced single crystal nickel-based superalloys [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 341
|
42 |
Tang Z H, Wang K D, Dong X, et al. Effect of warm laser shock peening on the low-cycle fatigue behavior of DD6 nickel-based single-crystal superalloy [J]. J. Mater. Eng. Perform., 2021, 30: 2930
doi: 10.1007/s11665-021-05508-7
|
43 |
Zhang M, Zhao Y S, Guo Y Y, et al. Effect of overheating events on microstructure and low-cycle fatigue properties of a nickel-based single-crystal superalloy [J]. Metall. Mater. Trans., 2022, 53A: 2214
|
44 |
Yang X G, Tan L, Sui T X, et al. Low cycle fatigue behaviour of a single crystal Ni-based superalloy with a central hole: Effect of inhomogeneous rafting microstructure [J]. Int. J. Fatigue, 2021, 153: 106467
doi: 10.1016/j.ijfatigue.2021.106467
|
45 |
Zhang B, Wang R Q, Hu D Y, et al. Damage-based low-cycle fatigue lifetime prediction of nickel-based single-crystal superalloy considering anisotropy and dwell types [J]. Fatigue Fract. Eng. Mater. Struct., 2020, 43: 2956
doi: 10.1111/ffe.v43.12
|
46 |
Fan Y S, Yang X G, Tan L, et al. Fatigue life evaluation for notched single-crystal Ni-based superalloys considering inhomogeneous rafting microstructure [J]. Int. J. Fatigue, 2023, 166: 107255
doi: 10.1016/j.ijfatigue.2022.107255
|
47 |
Hu B, Pei Y L, Gong S K, et al. Orientation dependence of high cycle fatigue behavior of a<111> oriented single-crystal nickel-based superalloy [J]. Metals, 2021, 11: 1248
doi: 10.3390/met11081248
|
48 |
Dong J M, Li J R. Effect of etching on fatigue properties of DD6 single-crystal superalloy [J]. J. Mater. Eng. Perform., 2020, 29: 3195
doi: 10.1007/s11665-020-04865-z
|
49 |
Zhang Z J, Zhang M Q. Effect of different drilling techniques on high-cycle fatigue behavior of nickel-based single-crystal superalloy with film cooling hole [J]. High Temp. Mater. Proc., 2021, 40: 121
doi: 10.1515/htmp-2020-0072
|
50 |
Cervellon A, Hémery S, Kürnsteiner P, et al. Crack initiation mechanisms during very high cycle fatigue of Ni-based single crystal superalloys at high temperature [J]. Acta Mater., 2020, 188: 131
doi: 10.1016/j.actamat.2020.02.012
|
51 |
Zhao Z, Li Q, Zhang F, et al. Transition from internal to surface crack initiation of a single-crystal superalloy in the very-high-cycle fatigue regime at 1100oC [J]. Int. J. Fatigue, 2021, 150: 106343
doi: 10.1016/j.ijfatigue.2021.106343
|
52 |
Li Y W, Wang D, He Y F, et al. High temperature VHCF of a 3rd generation Ni-based single crystal superalloy with different casting pore sizes [J]. Int. J. Fatigue, 2023, 175: 107804
doi: 10.1016/j.ijfatigue.2023.107804
|
53 |
Cervellon A, Torbet C J, Pollock T M. Crack initiation anisotropy of Ni-based SX superalloys in the very high cycle fatigue regime [J]. Mater. Sci. Eng., 2021, A825: 141920
|
54 |
Ormastroni L M B, Lopez-Galilea I, Ruttert B, et al. On the impact of an integrated HIP treatment on the very high cycle fatigue life of Ni-based SX superalloys [J]. Metall. Mater. Trans., 2023, 54A: 1469
|
55 |
Luo C, Yuan H. Anisotropic thermomechanical fatigue of a nickel-base single-crystal superalloy Part I: Effects of crystal orientations and damage mechanisms [J]. Int. J. Fatigue, 2023, 168: 107438
doi: 10.1016/j.ijfatigue.2022.107438
|
56 |
Ge Z C, Xie G, Segersäll M, et al. Influence of Ru on the thermomechanical fatigue deformation behavior of a single crystal superalloy [J]. Int. J. Fatigue, 2022, 156: 106634
doi: 10.1016/j.ijfatigue.2021.106634
|
57 |
Kontis P, Ge Z C, Xie G, et al. The role of Ru on the deformation mechanism of a single crystal superalloy during thermomechanical fatigue [R]. San Diego: TMS, 2023
|
58 |
Sun J Y, Yang S, Yuan H. Assessment of thermo-mechanical fatigue in a nickel-based single-crystal superalloy CMSX-4 accounting for temperature gradient effects [J]. Mater. Sci. Eng., 2021, A809: 140918
|
59 |
Yang J J, Jing F L, Yang Z M, et al. Thermomechanical fatigue damage mechanism and life assessment of a single crystal Ni-based superalloy [J]. J. Alloys Compd., 2021, 872: 159578
doi: 10.1016/j.jallcom.2021.159578
|
60 |
Smith R, Lancaster R, Jones J, et al. Lifing the effects of crystallographic orientation on the thermo-mechanical fatigue behaviour of a single-crystal superalloy [J]. Materials, 2019, 12: 998
doi: 10.3390/ma12060998
|
61 |
Chen Z H, Li X T, Dong T, et al. The mechanism of thermal corrosion fatigue (TCF) on nickel-based single crystal superalloy and the corresponding structure shape effect [J]. Corros. Sci., 2021, 179: 109142
doi: 10.1016/j.corsci.2020.109142
|
62 |
Yuan T Y, Dou M, Liu L, et al. Improving high temperature fretting fatigue performance of nickel-based single crystal superalloy by shot peening [J]. Int. J. Fatigue, 2023, 171: 107563
doi: 10.1016/j.ijfatigue.2023.107563
|
63 |
Okazaki M, Balavenkatesh R, Yamagishi S, et al. Fretting fatigue life extension for single crystal Ni-based superalloy by applying optimized surface texturing [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 196
|
64 |
Reinhart G, Grange D, Abou-Khalil L, et al. Impact of solute flow during directional solidification of a Ni-based alloy: In-situ and real-time X-radiography [J]. Acta Mater., 2020, 194: 68
doi: 10.1016/j.actamat.2020.04.003
|
65 |
Perry S J, D'Souza N, Collins D M, et al. An in situ resistance-based method for tracking the temporal evolution of recovery and recrystallization in Ni-base single-crystal superalloy at super-solvus temperatures [J]. Metall. Mater. Trans., 2023, 54A: 1582
|
66 |
Niu H Y, Zheng F C, Wang H, et al. An in situ X-ray tomography study on the stress corrosion behavior of a Ni-based single-crystal superalloy [J]. Metall. Mater. Trans., 2023, 54A: 777
|
67 |
Liu K L, Wang J S, Wang B, et al. In-situ X-ray tomography investigation of pore damage effects during a tensile test of a Ni-based single crystal superalloy [J]. Mater. Charact., 2021, 177: 111180
doi: 10.1016/j.matchar.2021.111180
|
68 |
Huang Y Q, Wang D, Shen J, et al. Initiation of fatigue cracks in a single-crystal nickel-based superalloy at intermediate temperature [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 208
|
69 |
Dennstedt A, Lopez-Galilea I, Ruttert B, et al. Combining 2D and 3D characterization techniques for determining effects of HIP rejuvenation after fatigue testing of SX microstructures [J]. Metall. Mater. Trans., 2023, 54A: 1535
|
70 |
He Y F, Wang S G, Shen J, et al. Evolution of micro-pores in a single crystal nickel-based superalloy during 980oC creep [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1397
doi: 10.1007/s40195-021-01371-6
|
71 |
Sommerschuh M, Wirth J, Merle B, et al. Deformation behaviour of TCP-phases in an additively manufactured Ni-base superalloy studied by 3D X-ray nanotomography and micro-compression tests [R]. Bamberg, Bavaria: DGM, 2022
|
72 |
Ren X Y, Lu J X, Zhou J L, et al. In-situ fatigue behavior study of a nickel-based single-crystal superalloy with different orientations [J]. Mater. Sci. Eng., 2022, A855: 143913
|
73 |
Duan Q Y, Xue H W, Yang Y H, et al. Study on fracture behavior of nickel-based single crystal superalloy subjected to high temperature fatigue using digital image correlation [J]. Int. J. Fatigue, 2022, 155: 106598
doi: 10.1016/j.ijfatigue.2021.106598
|
74 |
Shang Y, Dong Y L, Pei Y L, et al. In situ creep behavior characterization of single crystal superalloy by UV-DIC at 980oC [J]. Coatings, 2019, 9: 598
doi: 10.3390/coatings9100598
|
75 |
Ma J Y, Lu J X, Tang L, et al. A novel instrument for investigating the dynamic microstructure evolution of high temperature service materials up to 1150oC in scanning electron microscope [J]. Rev. Sci. Instrum., 2020, 91: 043704
|
76 |
Zhou J L, Gao W J, Liu L E, et al. In-situ SEM study on fatigue crack behavior of a nickel-based single crystal alloy at 950oC and 1050oC [J]. Mater. Charact., 2023, 199: 112763
doi: 10.1016/j.matchar.2023.112763
|
77 |
Xie H F, Wang J, Wang Z, et al. In situ scanning-digital image correlation for high-temperature deformation measurement of nickel-based single crystal superalloy [J]. Meas. Sci. Technol., 2021, 32: 084008
|
78 |
Evangelou A, Soady K A, Lockyer S, et al. On the mechanism of oxidation-fatigue damage at intermediate temperatures in a single crystal Ni-based superalloy [J]. Mater. Sci. Eng., 2019, A742: 648
|
79 |
Li Y W, Wang L, Lou L H, et al. Stress effect on rupture mechanisms of a third generation single crystal superalloy crept at ultra-high temperature [J]. Aeron. Manuf. Technol., 2023, 66(4): 48
|
79 |
李亚微, 王 莉, 楼琅洪 等. 应力对第3代单晶高温合金超高温蠕变断裂机制的影响 [J]. 航空制造技术, 2023, 66(4): 48
|
80 |
Xiao Q F, Xu Y M, Liu X L, et al. Oxidation-induced recrystallization and damage mechanism of a Ni-based single-crystal superalloy during creep [J]. Mater. Charact., 2023, 195: 112465
doi: 10.1016/j.matchar.2022.112465
|
81 |
le Graverend J B, Lee S. Phenomenological modeling of the effect of oxidation on the creep response of Ni-based single-crystal superalloys [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 282
|
82 |
Brooking L, Gray S, Dawson K, et al. Analysis of combined static load and low temperature hot corrosion induced cracking in CMSX-4 at 550oC [J]. Corros. Sci., 2020, 163: 108293
doi: 10.1016/j.corsci.2019.108293
|
83 |
Duarte Martinez F, Morar N I, Kothari M, et al. Investigation into the effects of salt chemistry and SO2 on the crack initiation of CMSX-4 in static loading conditions [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 753
|
84 |
Brooking L, Ferguson C, Mason-Flucke J, et al. Measurement and evaluation of co-existing crack propagation in single-crystal superalloys in hot corrosion fatigue environments [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 771
|
85 |
Jadon J K S, Singh R, Mahato J K. Creep-fatigue interaction behavior of high temperature alloys: A review [J]. Mater. Today: Proc., 2022, 62: 5351
|
86 |
Suzuki S, Sakaguchi M. Fatigue crack retardation associated with creep deformation induced by a tension hold in a single crystal Ni-base superalloy [J]. Scr. Mater., 2020, 178: 346
doi: 10.1016/j.scriptamat.2019.11.058
|
87 |
Wang Z, Wu W W, Liang J C, et al. Creep-fatigue interaction behavior of nickel-based single crystal superalloy at high temperature by in-situ SEM observation [J]. Int. J. Fatigue, 2020, 141: 105879
doi: 10.1016/j.ijfatigue.2020.105879
|
88 |
Okamoto R, Suzuki S, Sakaguchi M, et al. Evolution of short-term creep strain field near fatigue crack in single crystal Ni-based superalloy measured by digital image correlation [J]. Int. J. Fatigue, 2022, 162: 106952
doi: 10.1016/j.ijfatigue.2022.106952
|
89 |
Cervellon A, Yi J Z, Corpace F, et al. Creep, fatigue, and oxidation interactions during high and very high cycle fatigue at elevated temperature of nickel-based single crystal superalloys [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 185
|
90 |
Yu Z Y, Wang X M, Liang H, et al. Thickness debit effect in Ni-based single crystal superalloys at different stress levels [J]. Int. J. Mech. Sci., 2020, 170: 105357
doi: 10.1016/j.ijmecsci.2019.105357
|
91 |
Zhang B, Wang R Q, Liu H Y, et al. Low cycle fatigue lifetime and deformation behaviour prediction of nickel-based single crystal superalloy considering thickness debit effect [J]. Eng. Fract. Mech., 2023, 281: 109076
doi: 10.1016/j.engfracmech.2023.109076
|
92 |
Lv J J, Zhao Y S, Wang S, et al. Stress state mechanism of thickness debit effect in creep performances of a Ni-based single crystal superalloy [J]. Int. J. Plast., 2022, 159: 103470
doi: 10.1016/j.ijplas.2022.103470
|
93 |
Tao X P, Wang X G, Zhou Y Z, et al. Effect of Pt-Al bond-coat on the tensile deformation and fracture behaviors of a second-generation SX Ni-based superalloy at elevated temperatures [J]. Surf. Coat. Technol., 2020, 389: 125640
doi: 10.1016/j.surfcoat.2020.125640
|
94 |
Liu Y, Ru Y, Zhang H, et al. Coating-assisted deterioration mechanism of creep resistance at a nickel-based single-crystal superalloy [J]. Surf. Coat. Technol., 2021, 406: 126668
doi: 10.1016/j.surfcoat.2020.126668
|
95 |
Cervellon A, Ormastroni L M B, Hervier Z, et al. Damage mechanisms during very high cycle fatigue of a coated and grit-blasted Ni-based single-crystal superalloy [J]. Int. J. Fatigue, 2021, 142: 105962
doi: 10.1016/j.ijfatigue.2020.105962
|
96 |
Huang X, Qi H Y, Li S L, et al. Effect of thermal barrier coatings on the fatigue behavior of a single crystal nickel-based superalloy: Mechanism and lifetime modeling [J]. Surf. Coat. Technol., 2023, 454: 129184
doi: 10.1016/j.surfcoat.2022.129184
|
97 |
Shang Y, Zhang H, Hou H Z, et al. High temperature tensile behavior of a thin-walled Ni based single-crystal superalloy with cooling hole: In-situ experiment and finite element calculation [J]. J. Alloys Compd., 2019, 782: 619
doi: 10.1016/j.jallcom.2018.12.232
|
98 |
Guo Z X, Song Z Y, Fan J, et al. Experimental and analytical investigation on service life of film cooling structure for single crystal turbine blade [J]. Int. J. Fatigue, 2021, 150: 106318
doi: 10.1016/j.ijfatigue.2021.106318
|
99 |
Zhang D X, He J Y, Liang J W. Creep rupture mechanism and microstructure evolution around film-cooling holes in nickel-based single crystal superalloy specimen [J]. Eng. Fract. Mech., 2020, 235: 107187
doi: 10.1016/j.engfracmech.2020.107187
|
100 |
Li J G, Meng X B, Liu J D, et al. Common solidification defects and inhibition methods in single crystal superalloy turbine blades [J]. Spec. Cast. Nonferrous Alloys, 2021, 41: 1321
|
100 |
李金国, 孟祥斌, 刘纪德 等. 单晶高温合金涡轮叶片的常见凝固缺陷及控制方法 [J]. 特种铸造及有色合金, 2021, 41: 1321
doi: 10.15980/j.tzzz.2021.11.001
|
101 |
Liu L, Sun D J, Huang T W, et al. Directional solidification under high thermal gradient and its application in superalloys processing [J]. Acta Metall. Sin., 2018, 54: 615
doi: 10.11900/0412.1961.2018.00075
|
101 |
刘 林, 孙德建, 黄太文 等. 高梯度定向凝固技术及其在高温合金制备中的应用 [J]. 金属学报, 2018, 54: 615
|
102 |
Zeng L, Li J, Xia M G, et al. Directional solidification method for superalloy single crystal blade based on solid-liquid interface steady control [P]. US Pat, 0395896A1, 2022
|
103 |
Ma D X, Zhao Y X, Xu W T, et al. Influence of seeding materials on epitaxial growth of single crystal superalloys [J]. Chin. J. Nonferrous Met., 2023, 33: 445
|
103 |
马德新, 赵运兴, 徐维台 等. 高温合金籽晶材料对单晶外延生长的影响 [J]. 中国有色金属学报, 2023, 33: 445
|
104 |
Yang S, Zheng S J, Chen H. Effect of seed oxidation on solidification process of Ni-based single crystal superalloy [J]. Foundry, 2021, 70: 819
|
104 |
杨 帅, 郑素杰, 陈 昊. 镍基单晶高温合金籽晶氧化对凝固过程的影响 [J]. 铸造, 2021, 70: 819
|
105 |
Liu X G, Rao Y, Liu P Y, et al. Effect of temperature gradient on solidification microstructure of seeding preparation process for Ni-based single crystal superalloy DD6 [J]. Foundry, 2022, 71: 415
|
105 |
刘晓功, 饶 洋, 刘培元 等. 温度梯度对籽晶法制备镍基单晶高温合金DD6凝固组织的影响 [J]. 铸造, 2022, 71: 415
|
106 |
Werner F, Scholz F, Git P, et al. Effects of single crystal growth techniques on dendritic microstructures and small angle orientation defects in Ni-based superalloys [R]. Bamberg, Bavaria: DGM, 2022
|
107 |
Git P, Zenk C, Kourner C. Fluidized carbon bed cooling of Ni-based superalloy CMSX-4 [R]. Bamberg, Bavaria: DGM, 2022
|
108 |
Yang W C, Hao W S, Sa S P, et al. A multilayer module superimposed wax pattern structure and an efficient method for preparing single crystal blades [P]. Chin Pat, 202210530518.0, 2022
|
108 |
杨文超, 郝文硕, 撒世鹏 等. 一种多层模组叠加蜡模结构及其高效制备单晶叶片的方法 [P]. 中国专利, 202210530518.0, 2022
|
109 |
Shen J, Zhang J, Dong J S, et al. Preparation method of high efficiency densely arranged single crystal blades using liquid metal cooling and directional solidification technology [P]. Chin Pat, 202011457377.1, 2022
|
109 |
申 健, 张 健, 董加胜 等. 利用液态金属冷却定向凝固技术进行高效密排单晶叶片的制备方法 [P]. 中国专利, 202011457377.1, 2022
|
110 |
Aveson J W, Tennant P A, Foss B J, et al. On the origin of sliver defects in single crystal investment castings [J]. Acta Mater., 2013, 61: 5162
doi: 10.1016/j.actamat.2013.04.071
|
111 |
Sun D J, Liu L, Huang T W, et al. Formation of lateral sliver defects in the platform region of single-crystal superalloy turbine blades [J]. Metall. Mater. Trans., 2019, 50A: 1119
|
112 |
Huang Y Q, Shen J, Wang D, et al. Formation of sliver defect in Ni-based single crystal superalloy [J]. Metall. Mater. Trans., 2020, 51A: 99
|
113 |
Ma D X, Wang F, Xu W T, et al. Formation of sliver defects in single crystal castings of superalloys [J]. Acta Metall. Sin., 2020, 56: 301
|
113 |
马德新, 王 富, 徐维台 等. 高温合金单晶铸件中条纹晶的形成机制 [J]. 金属学报, 2020, 56: 301
doi: 10.11900/0412.1961.2019.00287
|
114 |
Xu W L, Wang F, Ma D X, et al. Sliver defect formation in single crystal Ni-based superalloy castings [J]. Mater. Des., 2020, 196: 109138
doi: 10.1016/j.matdes.2020.109138
|
115 |
Xia H X, Yang Y H, Feng Q S, et al. Generation mechanism and motion behavior of sliver defect in single crystal Ni-based superalloy [J]. J. Mater. Sci. Technol., 2023, 137: 232
doi: 10.1016/j.jmst.2022.07.045
|
116 |
Wang X J, Liu L, Huang T W, et al. A review on the influence of carbon addition on the solidification defects in nickel-based single crystal superalloys [J]. Mater. Rep., 2020, 34: 3148
|
116 |
王晓娟, 刘 林, 黄太文 等. 碳对镍基单晶高温合金凝固缺陷影响的研究进展 [J]. 材料导报, 2020, 34: 3148
|
117 |
Wang Z C, Li J R, Liu S Z, et al. Research progress in freckles of single crystal superalloys [J]. J. Mater. Eng., 2021, 49(7): 1
|
117 |
王志成, 李嘉荣, 刘世忠 等. 单晶高温合金雀斑研究进展 [J]. 材料工程, 2021, 49(7): 1
|
118 |
Ma D X. Effect of casting geometry on the freckle formation during single crystal solidification of superalloys [J]. Rare. Met. Mater. Eng., 2021, 50: 4357
|
118 |
马德新. 高温合金单晶铸件中形状因素对雀斑缺陷的影响 [J]. 稀有金属材料与工程, 2021, 50: 4357
|
119 |
Wang Z C, Li J R, Liu S Z, et al. Investigation on freckle formation of nickel-based single crystal superalloy specimens with suddenly reduced cross section [J]. J. Alloys Compd., 2022, 918: 165631
doi: 10.1016/j.jallcom.2022.165631
|
120 |
Ren N, Li J, Panwisawas C, et al. Insight into the sensitivities of freckles in the directional solidification of single-crystal turbine blades [J]. J. Manuf. Process., 2022, 77: 219
doi: 10.1016/j.jmapro.2022.03.019
|
121 |
Zhang H J, Liu X S, Ma D X, et al. Digital twin for directional solidification of a single-crystal turbine blade [J]. Acta Mater., 2023, 244: 118579
doi: 10.1016/j.actamat.2022.118579
|
122 |
Szeliga D. Reduction of freckle defect in single-crystal blade root by controlling local cooling conditions [J]. Metall. Mater. Trans., 2022, 53A: 3224
|
123 |
Newell M, D’Souza N, Green N R. Formation of low angle boundaries in Ni-based superalloys [J]. Int. J. Cast Met. Res., 2009, 22: 66
doi: 10.1179/136404609X367353
|
124 |
Bogdanowicz W, Krawczyk J, Paszkowski R, et al. Variation of crystal orientation and dendrite array generated in the root of SX turbine blades [J]. Materials, 2019, 12: 4126
doi: 10.3390/ma12244126
|
125 |
Shi Z W, Zheng W, Lu Y Z, et al. Sand-burning reaction of ceramic shell for directional solidification of nickel-based superalloy [J]. Chin. J. Mater. Res., 2021, 35: 251
|
125 |
石振威, 郑 伟, 卢玉章 等. 镍基高温合金定向凝固用陶瓷型壳粘砂反应 [J]. 材料研究学报, 2021, 35: 251
|
126 |
Yao J S, Dong L P, Wu Z Q, et al. Interfacial reaction mechanism between ceramic mould and single crystal superalloy for manufacturing turbine blade [J]. Materials, 2022, 15: 5514
doi: 10.3390/ma15165514
|
127 |
Orlov M R. Pore formation in single-crystal turbine rotor blades during directional solidification [J]. Russ. Metall., 2008, 2008: 56
doi: 10.1134/S0036029508010114
|
128 |
Xiong W, Huang Z W, Xie G, et al. On the inducement of recrystallization in single-crystal superalloy [J]. Metall. Mater. Trans., 2022, 53A: 1585
|
129 |
Xiong W, Huang Z W, Xie G, et al. The effect of deformation temperature on recrystallization in a Ni-based single crystal superalloys [J]. Mater. Des., 2022, 222: 111042
doi: 10.1016/j.matdes.2022.111042
|
130 |
Long M, Leriche N, Niane N T, et al. A new experimental and simulation methodology for prediction of recrystallization in Ni-based single crystal superalloys during investment casting [J]. J. Mater. Process. Technol., 2022, 306: 117624
doi: 10.1016/j.jmatprotec.2022.117624
|
131 |
Xiong W, Xie G, Zhang J. Recrystallization in Ni-based single crystal superalloys [R]. Bamberg, Bavaria: DGM, 2022
|
132 |
Zhang J, Song F Y. Research and applications of hot isostatic pressing technology in nickel-based single crystal superalloy [J]. Sci. Technol. Rev., 2020, 38(2): 11
doi: 10.20506/rst.issue.38.1.2937
|
132 |
张 剑, 宋富阳. 热等静压技术在镍基单晶高温合金中的应用研究进展 [J]. 科技导报, 2020, 38(2): 11
|
133 |
Horst O M, Ruttert B, Bürger D, et al. On the rejuvenation of crept Ni-base single crystal superalloys (SX) by hot isostatic pressing (HIP) [J]. Mater. Sci. Eng., 2019, A758: 202
|
134 |
Lopez-Galilea I, Hecker L, Epishin A, et al. Super-solidus hot isostatic pressing heat treatments for advanced single crystal Ni-base superalloys [J]. Metall. Mater. Trans., 2023, 54A: 1509
|
135 |
Ruttert B, Lopez-Galilea I, Theisen W. An integrated HIP heat-treatment of a single crystal Ni-base superalloy [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 391
|
136 |
Lan J, Xuan W D, Han Y, et al. Enhanced high temperature elongation of nickel based single crystal superalloys by hot isostatic pressing [J]. J. Alloys Compd., 2019, 805: 78
doi: 10.1016/j.jallcom.2019.07.056
|
137 |
Xuan W D, Zhang X Y, Zhao Y J, et al. Mechanism of improved intermediate temperature plasticity of nickel-base single crystal superalloy with hot isostatic pressing [J]. J. Mater. Res. Technol., 2021, 14: 1609
doi: 10.1016/j.jmrt.2021.07.010
|
138 |
He S L, Zhao Y S, Lu F, et al. Effects of hot isostatic pressure on microdefects and stress rupture life of second-generation nickel-based single crystal superalloy in as-cast and as-solid-solution states [J]. Acta Metall. Sin., 2020, 56: 1195
doi: 10.11900/0412.1961.2020.00020
|
138 |
和思亮, 赵云松, 鲁 凡 等. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响 [J]. 金属学报, 2020, 56: 1195
doi: 10.11900/0412.1961.2020.00020
|
139 |
He Y F, Wang L, Wang D, et al. Effect of hot isostatic pressing on microstructure of a third-generation single crystal superalloy DD33 [J]. Chin. J. Mater. Res., 2022, 36: 649
doi: 10.11901/1005.3093.2021.490
|
139 |
何禹锋, 王 莉, 王 栋 等. 热等静压对第三代单晶高温合金DD33显微组织和持久性能的影响 [J]. 材料研究学报, 2022, 36: 649
doi: 10.11901/1005.3093.2021.490
|
140 |
Nie X F, Li Y H, He W F, et al. Research progress and prospect of laser shock peening technology in aero-engine components [J]. J. Mech. Eng., 2021, 57(16): 293
doi: 10.3901/JME.2021.16.293
|
140 |
聂祥樊, 李应红, 何卫锋 等. 航空发动机部件激光冲击强化研究进展与展望 [J]. 机械工程学报, 2021, 57(16): 293
doi: 10.3901/JME.2021.16.293
|
141 |
Lu G X, Liu J D, Qiao H C, et al. Nonuniformity of morphology and mechanical properties on the surface of single crystal superalloy subjected to laser shock peening [J]. J. Alloys Compd., 2016, 658: 721
doi: 10.1016/j.jallcom.2015.10.238
|
142 |
Geng Y X, Dong X, Wang K D, et al. Evolutions of microstructure, phase, microhardness, and residual stress of multiple laser shock peened Ni-based single crystal superalloy after short-term thermal exposure [J]. Opt. Laser Technol., 2020, 123: 105917
doi: 10.1016/j.optlastec.2019.105917
|
143 |
Yao X, Ding Q, Zhao X, et al. Microstructural rejuvenation in a Ni-based single crystal superalloy [J]. Mater. Today Nano, 2022, 17: 100152
|
144 |
Rettberg L H, Callahan P G, Goodlet B R, et al. Rejuvenation of directionally solidified and single-crystal nickel-base superalloys [J]. Metall. Mater. Trans., 2021, 52A: 1609
|
145 |
Utada S, Ormastroni L M B, Rame J, et al. VHCF life of AM1 Ni-based single crystal superalloy after pre-deformation [J]. Int. J. Fatigue, 2021, 148: 106224
doi: 10.1016/j.ijfatigue.2021.106224
|
146 |
Utada S, Rame J, Hamadi S, et al. High-temperature pre-deformation and rejuvenation treatment on the microstructure and creep properties of Ni-based single-crystal superalloys [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 240
|
147 |
Liu C G, Yang Z Y, Zheng S J, et al. Effect of solution temperature in recovery heat treatment on microstructure and stress rupture properties of single crystal alloy DD11 [J]. Foundry, 2021, 70: 560
|
147 |
刘晨光, 杨振宇, 郑素杰 等. 恢复热处理固溶温度对DD11单晶合金组织及持久性能的影响 [J]. 铸造, 2021, 70: 560
|
148 |
Ruttert B, Horst O, Lopez-Galilea I, et al. Rejuvenation of single-crystal Ni-base superalloy turbine blades: Unlimited service life [J]. Metall. Mater. Trans., 2018, 49A: 4262
|
149 |
Kalfhaus T, Schneider M, Ruttert B, et al. Repair of Ni-based single-crystal superalloys using vacuum plasma spray [J]. Mater. Des., 2019, 168: 107656
doi: 10.1016/j.matdes.2019.107656
|
150 |
Hinchy E P, Barron D, Pomeroy M J, et al. Diffusion braze homogenisation and contraction during re-repair heat treatments of a single crystal nickel-based superalloy [J]. J. Alloys Compd., 2021, 857: 157560
doi: 10.1016/j.jallcom.2020.157560
|
151 |
Chen H, Lu Y Y, Luo D, et al. Epitaxial laser deposition of single crystal Ni-based superalloys: Repair of complex geometry [J]. J. Mater. Process. Technol., 2020, 285: 116782
doi: 10.1016/j.jmatprotec.2020.116782
|
152 |
Rong P, Yu W J, Wang D W, et al. The inhibition and repairation of the solidification cracks in laser cladded nickel-based single crystal alloy [J]. Appl. Laser, 2020, 40: 978
|
152 |
荣 鹏, 虞文军, 王大为 等. 激光熔覆镍基单晶合金凝固裂纹抑制与修复技术研究 [J]. 应用激光, 2020, 40: 978
|
153 |
Lang Z Q, Ye Z, Yang J, et al. Research progress of repair technology for surface defects of single crystal superalloy [J]. Chin. J. Mater. Res., 2021, 35: 161
|
153 |
郎振乾, 叶 政, 杨 健 等. 单晶高温合金表面缺陷焊接修复的研究进展 [J]. 材料研究学报, 2021, 35: 161
|
154 |
Xu Q Y, Xia H X. Research progress on numerical simulation of directional solidification of nickel-based superalloy turbine blade [J]. Aeroengine, 2021, 47(4): 141
|
154 |
许庆彦, 夏鹄翔. 镍基高温合金叶片定向凝固过程宏微观数值模拟研究进展 [J]. 航空发动机, 2021, 47(4): 141
|
155 |
Qin L. Multi-physics fully-coupled modelling and analysis of solidification defects formation for directionally solidified hollow turbine blades in large-size [D]. Xi'an: Northwestern Polytechnical University, 2018
|
155 |
秦 岭. 大型空心变截面定向晶涡轮叶片多物理场耦合模拟及凝固缺陷形成分析 [D]. 西安: 西北工业大学, 2018
|
156 |
Yan X W, Xu Q Y, Tian G Q, et al. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67: 36
doi: 10.1016/j.jmst.2020.06.051
|
157 |
Yan X W, Zhang H, Tang N, et al. Multi-scale simulation of single crystal hollow turbine blade manufactured by liquid metal cooling process [J]. Prog. Nat. Sci.: Mater. Int., 2018, 28: 78
doi: 10.1016/j.pnsc.2018.01.003
|
158 |
Huo M, Liu L, Yang W C, et al. Dendrite growth and defects formation with increasing withdrawal rates in the rejoined platforms of Ni-based single crystal superalloys [J]. Vacuum, 2019, 161: 29
doi: 10.1016/j.vacuum.2018.12.013
|
159 |
Han D Y, Jiang W G, Xiao J H, et al. Investigation on freckle formation and evolution of single-crystal nickel-based superalloy specimens with different thicknesses and abrupt cross-section changes [J]. J. Alloys Compd., 2019, 805: 218
doi: 10.1016/j.jallcom.2019.07.045
|
160 |
Bellomo N P, Öztürk I, Günzel M, et al. Identifying critical defect sizes from pore clusters in nickel-based superalloys using automated analysis and casting simulation [J]. Metall. Mater. Trans., 2023, 54A: 1699
|
161 |
Zeng L, Lin J, Xia M X, et al. Directional solidification method for superalloy single crystal blade based on solid-liquid interface steady control [P]. US Pat, 20220395896A1, 2022
|
162 |
Guo X, Yang A T, Zhao D Y, et al. Research on displacement and wall thickness evolution of gas turbine blade during casting process based on cantilever structure core [J]. J. Chin. Soc. Power Eng., 2021, 41: 452
|
162 |
郭 雄, 杨啊涛, 赵代银 等. 基于悬臂结构型芯的燃机叶片铸造过程位移、壁厚演化研究 [J]. 动力工程学报, 2021, 41: 452
|
163 |
Xia S X, Liu Z F, Guo J Z, et al. A coupled numerical scheme for simulating the process of liquid metal cooling process [R]. Banff, Alberta: CIM, 2023
|
164 |
Schleifer F, Fleck M, Holzinger M, et al. Phase-field modeling of γ' and γ″ precipitate size evolution during heat treatment of Ni-based superalloys [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 500
|
165 |
Yang M. Phase-field simulation of γʹ morphology evolution for Ni-based alloys considering elastic and plastic fields [D]. Xi'an: Northwestern Polytechnical University, 2019
|
165 |
杨 敏. 弹塑性场作用下镍基合金γʹ相演化过程的相场模拟 [D]. 西安: 西北工业大学, 2019
|
166 |
Li Y, Liang X Y, Yu Y F, et al. Review on additive manufacturing of single-crystal nickel-based superalloys [J]. Chin. J. Mech. Eng.: Addit. Manuf. Front., 2022, 1: 100019
|
167 |
Yang J J, Li F Z, Pan A Q, et al. Microstructure and grain growth direction of SRR99 single-crystal superalloy by selective laser melting [J]. J. Alloys Compd., 2019, 808: 151740
doi: 10.1016/j.jallcom.2019.151740
|
168 |
Ci S W, Liang J J, Li J G, et al. Microstructure and stress-rupture property of DD32 nickel-based single crystal superalloy fabricated by additive manufacturing [J]. J. Alloys Compd., 2021, 854: 157180
doi: 10.1016/j.jallcom.2020.157180
|
169 |
Bürger D, Parsa A B, Ramsperger M, et al. Creep properties of single crystal Ni-base superalloys (SX): A comparison between conventionally cast and additive manufactured CMSX-4 materials [J]. Mater. Sci. Eng., 2019, A762: 138098
|
170 |
Ormastroni L M B, Lopez-Galilea I, Pistor J, et al. Very high cycle fatigue durability of an additively manufactured single-crystal Ni-based superalloy [J]. Addit. Manuf., 2022, 54: 102759
|
171 |
Bäreis J, Semjatov N, Renner J, et al. Electron-optical in-situ crack monitoring during electron beam powder bed fusion of the Ni-Base superalloy CMSX-4 [J]. Prog. Addit. Manuf., doi: 10.1007/s40964-022-00357-9
doi: 10.1007/s40964-022-00357-9
|
172 |
Tinat M R A, Uddagiri M, Steinbach I, et al. Numerical simulations to predict the melt pool dynamics and heat transfer in additive manufacturing process of Ni-based superalloy (CMSX-4) [R]. Bamberg, Bavaria: DGM, 2022
|
173 |
Ramsperger M, Eichler S. Electron beam based additive manufacturing of Alloy 247 for turbine engine application: From research towards industrialization [J]. Metall. Mater. Trans., 2023, 54A: 1730
|
174 |
Xiong W, Guo A X Y, Zhan S, et al. Refractory high-entropy alloys: A focused review of preparation methods and properties [J]. J. Mater. Sci. Technol., 2023, 142: 196
doi: 10.1016/j.jmst.2022.08.046
|
175 |
Hua X J, Hu P, Xing H R, et al. Development and property tuning of refractory high-entropy alloys: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1231
doi: 10.1007/s40195-022-01382-x
|
176 |
Xu Z Q, Ma Z L, Wang M, et al. Design of novel low density refractory high entropy alloys for high-temperature applications [J]. Mater. Sci. Eng., 2019, A755: 318
|
177 |
Wang W, Zhang Z T, Niu J Z, et al. Effect of Al addition on structural evolution and mechanical properties of the Al x HfNbTiZr high-entropy alloys [J]. Mater. Today Commun., 2018, 16: 242
|
178 |
Zhang H, Zhao Y Z, Cai J L, et al. High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase via laser additive manufacturing [J]. Mater. Des., 2021, 201: 109462
doi: 10.1016/j.matdes.2021.109462
|
179 |
Yurchenko N, Panina E, Tikhonovsky M, et al. Structure and mechanical properties of an in situ refractory Al20Cr10Nb15Ti20V25Zr10 high entropy alloy composite [J]. Mater. Lett., 2020, 264: 127372
doi: 10.1016/j.matlet.2020.127372
|
180 |
Kang B, Kong T, Ryu H J, et al. Superior mechanical properties and strengthening mechanisms of lightweight Al x CrNbVMo refractory high-entropy alloys (x = 0, 0.5, 1.0) fabricated by the powder metallurgy process [J]. J. Mater. Sci. Technol., 2021, 69: 32
doi: 10.1016/j.jmst.2020.07.012
|
181 |
Senkov O N, Jensen J K, Pilchak A L, et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr [J]. Mater. Des., 2018, 139: 498
doi: 10.1016/j.matdes.2017.11.033
|
182 |
Tong C J, Chen M R, Yeh J W, et al. Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements [J]. Metall. Mater. Trans., 2005, 36A: 1263
|
183 |
Liu Y, Zhang Y, Zhang H, et al. Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Si x high-entropy composites [J]. J. Alloys Compd., 2017, 694: 869
doi: 10.1016/j.jallcom.2016.10.014
|
184 |
Chen H, Kauffmann A, Laube S, et al. Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys [J]. Metall. Mater. Trans., 2018, 49A: 772
|
185 |
Han Z D, Chen N, Zhao S F, et al. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys [J]. Intermetallics, 2017, 84: 153
doi: 10.1016/j.intermet.2017.01.007
|
186 |
Waseem O A, Lee J, Lee H M, et al. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy Ti x WTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials [J]. Mater. Chem. Phys., 2018, 210: 87
doi: 10.1016/j.matchemphys.2017.06.054
|
187 |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
|
188 |
Sun J, Zhao W X, Yan P, et al. High temperature tensile properties of as-cast and forged CrMnFeCoNi high entropy alloy [J]. Mater. Sci. Eng., 2022, A850: 143570
|
189 |
Kuznetsov A V, Shaysultanov D G, Stepanov N D, et al. Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions [J]. Mater. Sci. Eng., 2012, A533: 107
|
190 |
Kumar P, Kim S J, Yu Q, et al. Compressive vs. tensile yield and fracture toughness behavior of a body-centered cubic refractory high-entropy superalloy Al0.5Nb1.25Ta1.25TiZr at temperatures from ambient to 1200oC [J]. Acta Mater., 2023, 245: 118620
doi: 10.1016/j.actamat.2022.118620
|
191 |
Xiao W C, Liu S F, Zhao Y L, et al. A novel single-crystal L12-strengthened Co-rich high-entropy alloy with excellent high-temperature strength and antioxidant property [J]. J. Mater. Res. Technol., 2023, 23: 2343
doi: 10.1016/j.jmrt.2023.01.182
|
192 |
Tsao T K, Yeh A C, Kuo C M, et al. The high temperature tensile and creep behaviors of high entropy superalloy [J]. Sci. Rep., 2017, 7: 12658
doi: 10.1038/s41598-017-13026-7
|
193 |
Daoud H M, Manzoni A M, Wanderka N, et al. High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy) [J]. JOM, 2015, 67: 2271
doi: 10.1007/s11837-015-1484-7
|
194 |
Gadelmeier C, Yang Y, Glatzel U, et al. Creep strength of refractory high-entropy alloy TiZrHfNbTa and comparison with Ni-base superalloy CMSX-4 [J]. Cell Rep. Phys. Sci., 2022, 3: 100991
|
195 |
Xu Z, Li G, Zhou Y, et al. Tension-compression asymmetry of nickel-based superalloys: A focused review [J]. J. Alloys Compd., 2023, 945: 169313
doi: 10.1016/j.jallcom.2023.169313
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|