Please wait a minute...
金属学报  2023, Vol. 59 Issue (8): 1027-1041    DOI: 10.11900/0412.1961.2023.00184
  综述 本期目录 | 过刊浏览 |
奥氏体基Fe-Mn-Al-C轻质钢的研究进展
丁桦1,2,3(), 张宇3, 蔡明晖1,3, 唐正友1,3
1东北大学 材料科学与工程学院 沈阳 110819
2东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
3东北大学 辽宁省轻量化用关键金属结构材料重点实验室 沈阳 110819
Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels
DING Hua1,2,3(), ZHANG Yu3, CAI Minghui1,3, TANG Zhengyou1,3
1School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
3Key Laboratory of Lightweight Structural Materials, Liaoning Province, Northeastern University, Shenyang 110819, China
引用本文:

丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
Hua DING, Yu ZHANG, Minghui CAI, Zhengyou TANG. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. Acta Metall Sin, 2023, 59(8): 1027-1041.

全文: PDF(2481 KB)   HTML
摘要: 

材料的轻量化是一个永恒的课题。Fe-Mn-Al-C钢密度低,综合性能良好,日益得到材料研究领域和工业界的重视。在Fe-Mn-Al-C轻质钢中,通过对合金成分和工艺参数进行设计,可以获得不同的显微组织,得到力学性能范围很宽的高性能钢。新一代轻质高强Fe-Mn-Al-C钢的组织演变和变形机制有很多与其他钢铁材料不同的特点,涉及到许多新的物理冶金问题,需要对其进行深入研究。本文对近年来奥氏体基Fe-Mn-Al-C轻质钢中合金元素的作用、组织与性能之间的关系及变形机制等方面的研究进行综述,并对未来的研究方向做了展望,提出应进一步加强在新型Fe-Mn-Al-C轻质钢的合金设计、组织设计与调控、变形机制的定量分析及成形与使役性能等方面的研究,为高性能Fe-Mn-Al-C轻质钢的开发与应用奠定基础。

关键词 Fe-Mn-Al-C轻质钢奥氏体力学性能变形机制    
Abstract

Weight reduction of materials is an eternal topic. Recently, Fe-Mn-Al-C steels with low density and good comprehensive properties have attracted considerable interests in the fields of material research and industries. In Fe-Mn-Al-C steels, various microstructures can be produced and various mechanical properties can be achieved by rationally designing alloying compositions and process parameters. In the new-generation lightweight, high-strength Fe-Mn-Al-C steels, microstructural evolution and deformation mechanisms possess many characteristics that differ from those in other steels, and several novel aspects in physical metallurgy are involved and require to be thoroughly researched. In this paper, recent progress on the role of alloying elements, the relationship between microstructures and mechanical properties, and deformation mechanisms was reviewed and the future directions of research are proposed. To provide a solid foundation for the development and applications of the new type of Fe-Mn-Al-C lightweight steels, alloy design, microstructural design and control, quantitative analysis of deformation mechanisms, and forming and service properties should be focused.

Key wordsFe-Mn-Al-C    lightweight steel    austenite    mechanical property    deformation mechanism
收稿日期: 2023-05-04     
ZTFLH:  TG142.25  
基金资助:国家自然科学基金项目(U1760205);国家自然科学基金项目(51474062)
通讯作者: 丁 桦,dingh@smm.neu.edu.cn,主要从事高性能材料的制备与组织性能控制的研究
Corresponding author: DING Hua, professor, Tel:13898876262, E-mail: dingh@smm.neu.edu.cn
作者简介: 丁 桦,女,1958年生,教授,博士
图1  奥氏体基Fe-Mn-Al-C轻质钢有序相的原子位置示意图[30]
图2  Fe-11Mn-10Al-1.25C钢不同温度退火后的XRD谱和显微组织[43]
Alloy (mass fraction / %)YS / MPaUTS / MPaTE / %Phaseρ / (g·cm-3)Γ / (mJ·m-2)Ref.
Fe-28Mn-9Al-0.8C440840100γ6.7885[7]
Fe-30.4Mn-8Al-1.2C1020112541γ + κ--[87]
Fe-20Mn-9Al-0.6C51480646γ + α6.8470[23]
Fe-28Mn-12Al-1.0C7301000~55γ + α + κ6.50110[3]
Fe-25.7Mn-10.6Al-1.2C1251138743γ + α + κ--[12]
Fe-27Mn-12Al-0.8C81295542γ + δ + κ + B2 + D036.5392[30]
Fe-18Mn-10Al-0.8C71197938γ + α + κ + B2 + D036.8877.9[16]
Fe-11Mn-10Al-1.25C1041109729γ + α + κ--[42]
表1  奥氏体和奥氏体基双相轻质钢的力学性能和相组成[3,7,12,16,23,30,42,87]
图3  Fe-Mn-Al-C-X轻质钢的抗拉强度和总伸长率比较图[14,19,40,59~63,69,71~73,80]
图4  多成分复相钢(CCS)的变形组织(应变为1.5%)[62]
图5  Fe-25.7Mn-10.6Al-1.2C钢的显微组织[12]
1 Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater Sci., 2017, 89: 345
doi: 10.1016/j.pmatsci.2017.05.002
2 Ye J S. An investigation of 15Mn26Al4 low-temperature steel [J]. Acta. Metall. Sin., 1977, 13: 149
2 叶基石. 15Mn26Al4低温钢的研究 [J]. 金属学报, 1977, 13: 149
3 Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels [J]. Steel Res. Int., 2006, 77: 627
doi: 10.1002/srin.2006.77.issue-9-10
4 Liu C Q, Peng Q C, Xue Z L, et al. Research situation of Fe-Mn-Al-C system low-density high-strength steel [J], Mater. Rep., 2019, 33: 2572
4 刘春泉, 彭其春, 薛正良 等. Fe-Mn-Al-C系列低密度高强钢的研究现状 [J]. 材料导报, 2019, 33: 2572
5 Wang F Q, Sun T, Wang M Q, et al. Research progress of Fe-Mn-Al-C system austenitic low density steel [J]. Iron Steel, 2021, 56(6): 89
5 王凤权, 孙 挺, 王毛球 等. Fe-Mn-Al-C系奥氏体基低密度钢的研究进展 [J]. 钢铁, 2021, 56(6): 89
6 Man T H, Peng W, Wang Z B, et al. Research progress and prospect of Fe-Mn-Al-C low-density steels [J]. China Metall., 2022, 32(1): 11
6 满廷慧, 彭 伟, 王子波 等. Fe-Mn-Al-C 低密度钢研究现状及展望 [J]. 中国冶金, 2022, 32(1): 11
7 Yoo J D, Park K T. Microband-induced plasticity in a high Mn-Al-C light steel [J]. Mater. Sci. Eng., 2008, A496: 417
8 Yoo J D, Hwang S W, Park K T. Factors influencing the tensile behavior of a Fe-28Mn-9Al-0.8C steel [J]. Mater. Sci. Eng., 2009, A508: 234
9 Park K T, Jin K G, Han S H, et al. Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition [J]. Mater. Sci. Eng., 2010, A527: 3651
10 Park K T. Tensile deformation of low-density Fe-Mn-Al-C austenitic steels at ambient temperature [J]. Scr. Mater., 2013, 68: 375
doi: 10.1016/j.scriptamat.2012.09.031
11 Gutierrez-Urrutia I, Raabe D. High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides [J]. Mater. Sci. Technol., 2014, 30: 1099
doi: 10.1179/1743284714Y.0000000515
12 Zhang J L, Raabe D, Tasan C C. Designing duplex, ultrafine-grained Fe-Mn-Al-C steels by tuning phase transformation and recrystallization kinetics [J]. Acta Mater., 2017, 141: 374
doi: 10.1016/j.actamat.2017.09.026
13 Dong X Z, Wang D, Thoudden-Sukumar P, et al. Hydrogen-associated decohesion and localized plasticity in a high-Mn and high-Al two-phase lightweight steel [J]. Acta Mater., 2022, 239: 118296
doi: 10.1016/j.actamat.2022.118296
14 Hwang J H, Trang T T T, Lee O, et al. Improvement of strength- ductility balance of B2-strengthened lightweight steel [J]. Acta Mater., 2020, 191: 1
doi: 10.1016/j.actamat.2020.03.022
15 Zhang L F, Song R B, Zhao C, et al. Work hardening behavior involving the substructural evolution of an austenite-ferrite Fe-Mn-Al-C steel [J]. Mater. Sci. Eng., 2015, A640: 225
16 Ding H, Han D, Zhang J, et al. Tensile deformation behavior analysis of low density Fe-18Mn-10Al-xC steels [J]. Mater. Sci. Eng., 2016, A652: 69
17 Zhao C, Song R B, Zhang L F, et al. Effect of annealing temperature on the microstructure and tensile properties of Fe-10Mn-10Al-0.7C low-density steel [J]. Mater. Des., 2016, 91: 348
doi: 10.1016/j.matdes.2015.11.115
18 Ren P, Chen X P, Cao Z X, et al. Synergistic strengthening effect induced ultrahigh yield strength in lightweight Fe-30Mn-11Al-1.2C steel [J]. Mater. Sci. Eng., 2019, A752: 160
19 Zhang J L, Hu C H, Zhang Y H, et al. Microstructures, mechanical properties and deformation of near-rapidly solidified low-density Fe-20Mn-9Al-1.2C-xCr steels [J]. Mater. Des., 2020, 186: 108307
doi: 10.1016/j.matdes.2019.108307
20 Ren P, Chen X P, Wang C Y, et al. Effects of pre-strain and two-step aging on microstructure and mechanical properties of Fe-30Mn-11Al-1.2C austenitic low-density steel [J]. Acta. Metall. Sin., 2022, 58: 771
doi: 10.11900/0412.1961.2020.00509
20 任 平, 陈兴品, 王存宇 等. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响 [J]. 金属学报, 2022, 58: 771
21 Chen P, Zhang Q C, Zhang F, et al. Critical role of κ-carbides in the multi-stage work hardening process of a lightweight austenitic steel [J]. Mater. Charact., 2023, 200: 112853
doi: 10.1016/j.matchar.2023.112853
22 Wang H, Cao Z X, Gao Z Y, et al. Synergetic strengthening from dynamic slip band-grain boundary interaction in a low-density FeMnAlC steel [J]. Mater. Sci. Eng., 2023, A862: 144498
23 Hwang S W, Ji J H, Lee E G, et al. Tensile deformation of a duplex Fe-20Mn-9Al-0.6C steel having the reduced specific weight [J]. Mater. Sci. Eng., 2011, A528: 5196
24 Sutou Y, Kamiya N, Umino R, et al. High-strength Fe-20Mn-Al-C-based alloys with low density [J]. ISIJ Int., 2010, 50: 893
doi: 10.2355/isijinternational.50.893
25 Sohn S S, Song H, Suh B C, et al. Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization [J]. Acta Mater., 2015, 96: 301
doi: 10.1016/j.actamat.2015.06.024
26 Etienne A, Massardier-Jourdan V, Cazottes S, et al. Ferrite effects in Fe-Mn-Al-C triplex steels [J]. Metall. Mater. Trans., 2014, 45A: 324
27 Sohn S S, Lee B J, Lee S, et al. Effect of annealing temperature on microstructural modification and tensile properties in 0.35C-3.5Mn-5.8Al lightweight steel [J]. Acta Mater., 2013, 61: 5050
doi: 10.1016/j.actamat.2013.04.038
28 Ko K K, Bae H J, Park E H, et al. A feasible route to produce 1.1 GPa ferritic-based low-Mn lightweight steels with ductility of 47% [J]. J. Mater. Sci. Technol., 2022, 117: 225
doi: 10.1016/j.jmst.2021.11.052
29 Seo C H, Kwon K H, Choi K, et al. Deformation behavior of ferrite-austenite duplex lightweight Fe-Mn-Al-C steel [J]. Scri. Mater., 2012, 66: 519
doi: 10.1016/j.scriptamat.2011.12.026
30 Ha M C, Koo J M, Lee J K, et al. Tensile deformation of a low density Fe-27Mn-12Al-0.8C duplex steel in association with ordered phases at ambient temperature [J]. Mater. Sci. Eng., 2013, A586: 276
31 Wu Z Q. Investigations on the microstructures-properties relationship and deformation mechanism in high strength and high ductility low density steels [D]. Shenyang: Northeastern University, 2015
31 吴志强. 高强度高塑性低密度钢的组织性能和变形机制研究 [D]. 沈阳: 东北大学, 2015
32 Kim C W, Kwon S I, Lee B H, et al. Atomistic study of nano-sized κ-carbide formation and its interaction with dislocations in a cast Si added FeMnAlC lightweight steel [J]. Mater. Sci. Eng., 2016, A673: 108
33 Choo W K, Kim J H, Yoon J C. Microstructural change in austenitic Fe-30.0wt% Mn-7.8wt% Al-1.3wt% C initiated by spinodal decomposition and its influence on mechanical properties [J]. Acta Mater., 1997, 45: 4877
doi: 10.1016/S1359-6454(97)00201-2
34 Wang C S, Hwang C N, Chao C G, et al. Phase transitions in an Fe-9Al-30Mn-2.0C alloy [J]. Scr. Mater., 2007, 57: 809
doi: 10.1016/j.scriptamat.2007.07.007
35 Sato K, Tagawa K, Inoue Y. Age hardening of an Fe-30Mn-9Al-0.9C alloy by spinodal decomposition [J]. Scr. Metall., 1988, 22: 899
doi: 10.1016/S0036-9748(88)80071-1
36 Choi K, Seo C H, Lee H, et al. Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel [J]. Scr. Mater., 2010, 63: 1028
doi: 10.1016/j.scriptamat.2010.07.036
37 Chang K M, Chao C G, Liu T F. Excellent combination of strength and ductility in an Fe-9Al-28Mn-1.8C alloy [J]. Scr. Mater., 2010, 63: 162
doi: 10.1016/j.scriptamat.2010.03.038
38 Han K H, Yoon J C, Choo W K. TEM evidence of modulated structure in Fe-Mn-Al-C austenitic alloys [J]. Scr. Metall., 1986, 20: 33
doi: 10.1016/0036-9748(86)90208-5
39 Cheng W C, Cheng C Y, Hsu C W, et al. Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe-C-Mn-Al austenitic steel [J]. Mater. Sci. Eng., 2015, A642: 128
40 Wang Z W, Lu W J, Zhao H, et al. Formation mechanism of κ-carbides and deformation behavior in Si-alloyed FeMnAlC lightweight steels [J]. Acta Mater., 2020, 198: 258
doi: 10.1016/j.actamat.2020.08.003
41 Zhang J L, Jiang Y S, Zheng W S, et al. Revisiting the formation mechanism of intragranular κ-carbide in austenite of a Fe-Mn-Al-Cr-C low-density steel [J]. Scr. Mater., 2021, 199: 113836
doi: 10.1016/j.scriptamat.2021.113836
42 Liu D G, Cai M H, Ding H, et al. Control of inter/intra-granular κ-carbides and its influence on overall mechanical properties of a Fe-11Mn-10Al-1.25C low density steel [J]. Mater. Sci. Eng., 2018, A715: 25
43 Liu D G, Ding H, Cai M H, et al. Mechanical behaviors of a lower-Mn-added Fe-11Mn-10Al-1.25C lightweight steel with distinguished microstructural features [J]. Mater. Lett., 2019, 242: 131
doi: 10.1016/j.matlet.2019.01.115
44 Liu D G, Ding H, Han D, et al. Effect of grain interior and grain boundary κ-carbides on the strain hardening behavior of medium-Mn lightweight steels [J]. Mater. Sci. Eng., 2023, A871: 144861
45 Ishida K, Ohtani H, Satoh N, et al. Phase equilibria in Fe-Mn-Al-C alloys [J]. ISIJ Int., 1990, 30: 680
doi: 10.2355/isijinternational.30.680
46 Kim M S, Kang Y B. Development of thermodynamic database for high Mn-high Al steels: Phase equilibria in the Fe-Mn-Al-C system by experiment and thermodynamic modeling [J]. Calphad, 2015, 51: 89
doi: 10.1016/j.calphad.2015.08.004
47 Chin K G, Lee H J, Kwak J H, et al. Thermodynamic calculation on the stability of (Fe, Mn)3AlC carbide in high aluminum steels [J]. J. Alloys Compd., 2010, 505: 217
doi: 10.1016/j.jallcom.2010.06.032
48 Fartushna I, Bajenova I, Khvan A, et al. Experimental investigation of solidification and isothermal sections at 1000 and 1100oC in the Al-Fe-Mn-C system with special attention to the kappa-phase [J]. J. Alloys Compd., 2018, 735: 1211
doi: 10.1016/j.jallcom.2017.11.288
49 Rahnama A, Dashwood R, Sridhar S. A phase-field method coupled with CALPHAD for the simulation of ordered κ-carbide precipitates in both disordered γ and α phases in low density steel [J]. Comput. Mater. Sci., 2017, 126: 152
50 Song W W, Zhang W, von Appen J, et al. κ-phase formation in Fe-Mn-Al-C austenitic steels [J]. Steel Res. Int., 2015, 86: 1161
doi: 10.1002/srin.v86.10
51 Drouven C, Hallstedt B, Song W, et al. Experimental observation of κ-phase formation sequences by in-situ synchrotron diffraction [J]. Mater. Lett., 2019, 241: 111
doi: 10.1016/j.matlet.2019.01.062
52 Dey P, Nazarov R, Dutta B, et al. Ab initio explanation of disorder and off-stoichiometry in Fe-Mn-Al-C κ carbides [J]. Phys. Rev., 2017, 95B: 104108
53 Liu L B, Li C M, Yang Y, et al. A simple method to produce austenite-based low-density Fe-20Mn-9Al-0.75C steel by a near-rapid solidification process [J]. Mater. Sci. Eng., 2017, A679: 282
54 Ma T, Li H R, Gao J X, et al. Effect of alloying elements and aging treatment on the properties of kappa-carbide in Fe-Mn-Al-C low density steesl: A review [J]. Mater. Rep., 2020, 34: 11153
54 马 涛, 李慧蓉, 高建新 等. 合金元素及时效处理对Fe-Mn-Al-C低密度钢中κ-碳化物的影响特性综述 [J]. 材料导报, 2020, 34: 11153
55 Han D, Ding H, Liu D G, et al. Influence of C content and annealing temperature on the microstructures and tensile properties of Fe-13Mn-8Al-(0.7, 1.2)C steels [J]. Mater. Sci. Eng., 2020, A785:139286
56 Chen X P, Li W J, Ren P, et al. Effects of C content on microstructure and properties of Fe-Mn-Al-C low-density steels [J]. Acta Metall. Sin., 2019, 55: 951
56 陈兴品, 李文佳, 任 平 等. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响 [J]. 金属学报, 2019, 55: 951
doi: 10.11900/0412.1961.2019.00014
57 Li M C, Chang H, Kao P W, et al. The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe-Mn-Al-C alloys [J]. Mater. Chem. Phys., 1999, 59: 96
doi: 10.1016/S0254-0584(99)00026-7
58 Huang H, Gan D, Kao P W. Effect of alloying additions on the κ phase precipitation in austenitic Fe-Mn-Al-C alloys [J]. Scr. Metall. Mater., 1994, 30: 499
doi: 10.1016/0956-716X(94)90610-6
59 Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility [J]. Nature, 2015, 518: 77
doi: 10.1038/nature14144
60 Zhang B G, Zhang X M, Liu H T. Precipitation behavior of B2 and κ-carbide during aging and its effect on mechanical properties in Al-containing high strength steel [J]. Mater. Charact., 2021, 178: 111291
doi: 10.1016/j.matchar.2021.111291
61 Kim C, Hong H U, Jang J H, et al. Reverse partitioning of Al from κ-carbide to the γ-matrix upon Ni addition and its strengthening effect in Fe-Mn-Al-C lightweight steel [J]. Mater. Sci. Eng., 2021, A820: 141563
62 Wang Z W, Lu W J, Zhao H, et al. Ultrastrong lightweight compositionally complex steels via dual-nanoprecipitation [J]. Sci. Adv., 2020, 6: eaba9543
doi: 10.1126/sciadv.aba9543
63 Park G, Nam C H, Zargaran A, et al. Effect of B2 morphology on the mechanical properties of B2-strengthened lightweight steels [J]. Scr. Mater., 2019, 165: 68
doi: 10.1016/j.scriptamat.2019.02.013
64 Mishra B, Sarkar R, Singh V, et al. Microstructure and deformation behaviour of austenitic low-density steels: The defining role of B2 intermetallic phase [J]. Materialia, 2021, 20: 101198
doi: 10.1016/j.mtla.2021.101198
65 Yang M X, Yuan F P, Xie Q G, et al. Strain hardening in Fe-16Mn-10Al-0.86C-5Ni high specific strength steel [J]. Acta Mater., 2016, 109: 213
doi: 10.1016/j.actamat.2016.02.044
66 Rahnama A, Spooner S, Sridhar S. Control of intermetallic nano-particles through annealing in duplex low density steel [J]. Mater. Lett., 2017, 189: 13
doi: 10.1016/j.matlet.2016.11.020
67 Bartlett L N, Van Aken D C, Medvedeva J, et al. An atom probe study of kappa carbide precipitation and the effect of silicon addition [J]. Metall. Mater. Trans., 2014, 45A: 2421
68 Kim C W, Terner M, Lee J H, et al. Partitioning of C into κ-carbidesby Si addition and its effect on the initial deformation mechanism of Fe-Mn-Al-C lightweight steels [J]. J. Alloys Compd., 2019, 775: 554
doi: 10.1016/j.jallcom.2018.10.104
69 Zhi H H, Li J S, Li W M, et al. Simultaneously enhancing strength-ductility synergy and strain hardenability via Si-alloying in medium-Al FeMnAlC lightweight steels [J]. Acta Mater., 2023, 245: 118611
doi: 10.1016/j.actamat.2022.118611
70 Yang L, Li Z M, Li X, et al. An enhanced Fe-28Mn-9Al-0.8C lightweight steel by coprecipitation of nanoscale Cu-rich and κ-carbide particles [J]. Steel Res. Int., 2020, 91: 1900665
doi: 10.1002/srin.v91.7
71 Chen Z, Liu M X, Zhang J K, et al. Effect of annealing treatment on microstructures and properties of austenite-based Fe-28Mn-9Al-0.8C lightweight steel with addition of Cu [J]. China Foundry, 2021, 18: 207
doi: 10.1007/s41230-021-1026-6
72 Xie Z Q, Hui W J, Zhang Y J, et al. Effect of Cu and solid solution temperature on microstructure and mechanical properties of Fe-Mn-Al-C low-density steels [J]. J. Mater. Res. Technol., 2022, 18: 1307
doi: 10.1016/j.jmrt.2022.03.077
73 Song H, Yoo J, Kim S H, et al. Novel ultra-high-strength Cu-containing medium-Mn duplex lightweight steels [J]. Acta Mater., 2017, 135: 215
doi: 10.1016/j.actamat.2017.06.035
74 Han K H. The microstructures and mechanical properties of an austenitic Nb-bearing Fe-Mn-Al-C alloy processed by controlled rolling [J]. Mater. Sci. Eng., 2000, A279: 1
75 Park B H, Kim C W, Lee K W, et al. Role of Nb addition on microstructural stability and deformation behaviors of FeMnAlC lightweight steels at 400oC [J]. Metall. Mater. Trans., 2021, 52A: 4191
76 Ma T, Gao J X, Li H R, et al. Microband-induced plasticity in a Nb content Fe-28Mn-10Al-C low density steel [J]. Metals, 2021, 11: 345
doi: 10.3390/met11020345
77 Liu M X, Li X, Zhang Y H, et al. Multiphase precipitation and its strengthening mechanism in a V-containing austenite-based low density steel [J]. Intermetallics, 2021, 134: 107179
doi: 10.1016/j.intermet.2021.107179
78 Liu M X, Li X, Zhang Y H, et al. Precipitation of κ-carbide in a V-containing austenite-based lightweight steel [J]. Metall. Mater. Trans., 2022, 53A: 1231
79 Hu X L, Li Y L, Liu D G, et al. Mechanical behavior of Fe-12Mn-7Al-0.6C-(V) lightweight steels [J]. China Metall., 2019, 29(2): 39
79 胡小龙, 李英龙, 刘德罡 等. Fe-12Mn-7Al-0.6C-(V)轻质钢力学行为 [J]. 中国冶金, 2019, 29(2): 39
80 Moon J, Ha H Y, Kim K W, et al. A new class of lightweight, stainless steels with ultra-high strength and large ductility [J]. Sci. Rep., 2020, 10: 12140
doi: 10.1038/s41598-020-69177-7 pmid: 32699336
81 Tuan Y H, Wang C S, Tsai C Y, et al. Corrosion behaviors of austenitic Fe-30Mn-7Al-xCr-1C alloys in 3.5%NaCl solution [J]. Mater. Chem. Phys., 2009, 114: 595
doi: 10.1016/j.matchemphys.2008.10.009
82 Huang C F, Ou K L, Chen C S, et al. Research of phase transformation on Fe-8.7Al-28.3Mn-1C-5.5Cr alloy [J]. J. Alloys Compd., 2009, 488: 246
doi: 10.1016/j.jallcom.2009.08.097
83 Moon J, Park S J, Jang J H, et al. Atomistic investigations of κ-carbide precipitation in austenitic Fe-Mn-Al-C lightweight steels and the effect of Mo addition [J]. Scr. Mater., 2017, 127: 97
doi: 10.1016/j.scriptamat.2016.08.036
84 Chen C S, Lin C T, Peng P W, et al. Effects of cobalt content on the microstructures of Fe-9Al-30Mn-1C-xCo alloys [J]. J. Alloys Compd., 2010, 493: 346
doi: 10.1016/j.jallcom.2009.12.100
85 Zhao T, Chen C, Wang Y F, et al. Effect of Nb-V microalloying on low-cycle fatigue property of Fe-Mn-Al-C austenitic steel [J]. J. Mater. Res. Technol., 2023, 23: 3711
doi: 10.1016/j.jmrt.2023.02.020
86 Moon J, Jo H H, Park S J, et al. Ti-bearing lightweight steel with large high temperature ductility via thermally stable multi-phase microstructure [J]. Mater. Sci. Eng., 2021, A808: 140954
87 Yao M J, Welsch E, Ponge D, et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel [J]. Acta Mater., 2017, 140: 258
doi: 10.1016/j.actamat.2017.08.049
88 Cheng X N, Dai Q X, Wang A D. Stacking-fault energy and ε-martensite transformation of austenitic steels [J]. J. Iron Steel Res., 2003, 15(2): 55
doi: 10.1016/S1006-706X(08)60012-6
88 程晓农, 戴起勋, 王安东. 奥氏体钢层错能与ε马氏体相变 [J]. 钢铁研究学报, 2003, 15(2): 55
89 Park K T, Kim G, Kim S K, et al. On the transitions of deformation modes of fully austenitic steels at room temperature [J]. Met. Mater. Int., 2010, 16: 1
doi: 10.1007/s12540-010-0001-3
90 Byun T S. On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels [J]. Acta Mater., 2003, 51: 3063
doi: 10.1016/S1359-6454(03)00117-4
91 Welsch E, Ponge D, Hafez Haghighat S M, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel [J]. Acta Mater., 2016, 116: 188
doi: 10.1016/j.actamat.2016.06.037
92 Ding H, Li H Y, Wu Z Q, et al. Microstructural evolution and deformation behaviors of Fe-Mn-Al-C steels with different stacking fault energies [J]. Steel Res. Int., 2013, 84: 1288
doi: 10.1002/srin.201300052
93 Haase C, Zehnder C, Ingendahl T, et al. On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-weight steel [J]. Acta Mater., 2017, 122: 332
doi: 10.1016/j.actamat.2016.10.006
94 Ardell A J, Huang J C. Antiphase boundary energies and the transition from shearing to looping in alloys strengthened by ordered precipitates [J]. Philos. Mag. Lett., 1988, 58: 189
doi: 10.1080/09500838808214752
95 Yao M J, Dey P, Seol J B, et al. Combined atom probe tomography and density functional theory investigation of the Al off-stoichiometry of κ-carbides in an austenitic Fe-Mn-Al-C low density steel [J]. Acta Mater., 2016, 106: 229
doi: 10.1016/j.actamat.2016.01.007
96 Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
97 Wu X L, Zhu Y T. Heterostructured metallic materials: Plastic deformation and strain hardening [J]. Acta Metall. Sin., 2022, 58: 1349
doi: 10.11900/0412.1961.2022.00327
97 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化 [J]. 金属学报, 2022, 58: 1349
doi: 10.11900/0412.1961.2022.00327
98 Wei X, Fu L M, Liu S C, et al. Deformation behavior of constituent phases and the affected factors in dual-phase steel [J]. Chin. J. Mater. Res., 2013, 27: 665
98 魏 兴, 付立铭, 刘世昌 等. 双相钢组成相的变形行为及其影响因素 [J]. 材料研究学报, 2013, 27: 665
99 Latypov M I, Shin S, De Cooman B C, et al. Micromechanical finite element analysis of strain partitioning in multiphase medium manganese TWIP + TRIP steel [J]. Acta Mater., 2016, 108: 219
doi: 10.1016/j.actamat.2016.02.001
100 Lim H, Dingreville R, Deibler L A, et al. Investigation of grain-scale microstructural variability in tantalum using crystal plasticity-finite element simulations [J]. Comput. Mater. Sci., 2016, 117: 437
doi: 10.1016/j.commatsci.2016.02.022
101 Tasan C C, Diehl M, Yan D, et al. Integrated experimental-simulation analysis of stress and strain partitioning in multiphase alloys [J]. Acta Mater., 2014, 81: 386
doi: 10.1016/j.actamat.2014.07.071
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.