|
|
奥氏体基Fe-Mn-Al-C轻质钢的研究进展 |
丁桦1,2,3( ), 张宇3, 蔡明晖1,3, 唐正友1,3 |
1东北大学 材料科学与工程学院 沈阳 110819 2东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819 3东北大学 辽宁省轻量化用关键金属结构材料重点实验室 沈阳 110819 |
|
Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels |
DING Hua1,2,3( ), ZHANG Yu3, CAI Minghui1,3, TANG Zhengyou1,3 |
1School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China 3Key Laboratory of Lightweight Structural Materials, Liaoning Province, Northeastern University, Shenyang 110819, China |
引用本文:
丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
Hua DING,
Yu ZHANG,
Minghui CAI,
Zhengyou TANG.
Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. Acta Metall Sin, 2023, 59(8): 1027-1041.
1 |
Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater Sci., 2017, 89: 345
doi: 10.1016/j.pmatsci.2017.05.002
|
2 |
Ye J S. An investigation of 15Mn26Al4 low-temperature steel [J]. Acta. Metall. Sin., 1977, 13: 149
|
2 |
叶基石. 15Mn26Al4低温钢的研究 [J]. 金属学报, 1977, 13: 149
|
3 |
Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels [J]. Steel Res. Int., 2006, 77: 627
doi: 10.1002/srin.2006.77.issue-9-10
|
4 |
Liu C Q, Peng Q C, Xue Z L, et al. Research situation of Fe-Mn-Al-C system low-density high-strength steel [J], Mater. Rep., 2019, 33: 2572
|
4 |
刘春泉, 彭其春, 薛正良 等. Fe-Mn-Al-C系列低密度高强钢的研究现状 [J]. 材料导报, 2019, 33: 2572
|
5 |
Wang F Q, Sun T, Wang M Q, et al. Research progress of Fe-Mn-Al-C system austenitic low density steel [J]. Iron Steel, 2021, 56(6): 89
|
5 |
王凤权, 孙 挺, 王毛球 等. Fe-Mn-Al-C系奥氏体基低密度钢的研究进展 [J]. 钢铁, 2021, 56(6): 89
|
6 |
Man T H, Peng W, Wang Z B, et al. Research progress and prospect of Fe-Mn-Al-C low-density steels [J]. China Metall., 2022, 32(1): 11
|
6 |
满廷慧, 彭 伟, 王子波 等. Fe-Mn-Al-C 低密度钢研究现状及展望 [J]. 中国冶金, 2022, 32(1): 11
|
7 |
Yoo J D, Park K T. Microband-induced plasticity in a high Mn-Al-C light steel [J]. Mater. Sci. Eng., 2008, A496: 417
|
8 |
Yoo J D, Hwang S W, Park K T. Factors influencing the tensile behavior of a Fe-28Mn-9Al-0.8C steel [J]. Mater. Sci. Eng., 2009, A508: 234
|
9 |
Park K T, Jin K G, Han S H, et al. Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition [J]. Mater. Sci. Eng., 2010, A527: 3651
|
10 |
Park K T. Tensile deformation of low-density Fe-Mn-Al-C austenitic steels at ambient temperature [J]. Scr. Mater., 2013, 68: 375
doi: 10.1016/j.scriptamat.2012.09.031
|
11 |
Gutierrez-Urrutia I, Raabe D. High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides [J]. Mater. Sci. Technol., 2014, 30: 1099
doi: 10.1179/1743284714Y.0000000515
|
12 |
Zhang J L, Raabe D, Tasan C C. Designing duplex, ultrafine-grained Fe-Mn-Al-C steels by tuning phase transformation and recrystallization kinetics [J]. Acta Mater., 2017, 141: 374
doi: 10.1016/j.actamat.2017.09.026
|
13 |
Dong X Z, Wang D, Thoudden-Sukumar P, et al. Hydrogen-associated decohesion and localized plasticity in a high-Mn and high-Al two-phase lightweight steel [J]. Acta Mater., 2022, 239: 118296
doi: 10.1016/j.actamat.2022.118296
|
14 |
Hwang J H, Trang T T T, Lee O, et al. Improvement of strength- ductility balance of B2-strengthened lightweight steel [J]. Acta Mater., 2020, 191: 1
doi: 10.1016/j.actamat.2020.03.022
|
15 |
Zhang L F, Song R B, Zhao C, et al. Work hardening behavior involving the substructural evolution of an austenite-ferrite Fe-Mn-Al-C steel [J]. Mater. Sci. Eng., 2015, A640: 225
|
16 |
Ding H, Han D, Zhang J, et al. Tensile deformation behavior analysis of low density Fe-18Mn-10Al-xC steels [J]. Mater. Sci. Eng., 2016, A652: 69
|
17 |
Zhao C, Song R B, Zhang L F, et al. Effect of annealing temperature on the microstructure and tensile properties of Fe-10Mn-10Al-0.7C low-density steel [J]. Mater. Des., 2016, 91: 348
doi: 10.1016/j.matdes.2015.11.115
|
18 |
Ren P, Chen X P, Cao Z X, et al. Synergistic strengthening effect induced ultrahigh yield strength in lightweight Fe-30Mn-11Al-1.2C steel [J]. Mater. Sci. Eng., 2019, A752: 160
|
19 |
Zhang J L, Hu C H, Zhang Y H, et al. Microstructures, mechanical properties and deformation of near-rapidly solidified low-density Fe-20Mn-9Al-1.2C-xCr steels [J]. Mater. Des., 2020, 186: 108307
doi: 10.1016/j.matdes.2019.108307
|
20 |
Ren P, Chen X P, Wang C Y, et al. Effects of pre-strain and two-step aging on microstructure and mechanical properties of Fe-30Mn-11Al-1.2C austenitic low-density steel [J]. Acta. Metall. Sin., 2022, 58: 771
doi: 10.11900/0412.1961.2020.00509
|
20 |
任 平, 陈兴品, 王存宇 等. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响 [J]. 金属学报, 2022, 58: 771
|
21 |
Chen P, Zhang Q C, Zhang F, et al. Critical role of κ-carbides in the multi-stage work hardening process of a lightweight austenitic steel [J]. Mater. Charact., 2023, 200: 112853
doi: 10.1016/j.matchar.2023.112853
|
22 |
Wang H, Cao Z X, Gao Z Y, et al. Synergetic strengthening from dynamic slip band-grain boundary interaction in a low-density FeMnAlC steel [J]. Mater. Sci. Eng., 2023, A862: 144498
|
23 |
Hwang S W, Ji J H, Lee E G, et al. Tensile deformation of a duplex Fe-20Mn-9Al-0.6C steel having the reduced specific weight [J]. Mater. Sci. Eng., 2011, A528: 5196
|
24 |
Sutou Y, Kamiya N, Umino R, et al. High-strength Fe-20Mn-Al-C-based alloys with low density [J]. ISIJ Int., 2010, 50: 893
doi: 10.2355/isijinternational.50.893
|
25 |
Sohn S S, Song H, Suh B C, et al. Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization [J]. Acta Mater., 2015, 96: 301
doi: 10.1016/j.actamat.2015.06.024
|
26 |
Etienne A, Massardier-Jourdan V, Cazottes S, et al. Ferrite effects in Fe-Mn-Al-C triplex steels [J]. Metall. Mater. Trans., 2014, 45A: 324
|
27 |
Sohn S S, Lee B J, Lee S, et al. Effect of annealing temperature on microstructural modification and tensile properties in 0.35C-3.5Mn-5.8Al lightweight steel [J]. Acta Mater., 2013, 61: 5050
doi: 10.1016/j.actamat.2013.04.038
|
28 |
Ko K K, Bae H J, Park E H, et al. A feasible route to produce 1.1 GPa ferritic-based low-Mn lightweight steels with ductility of 47% [J]. J. Mater. Sci. Technol., 2022, 117: 225
doi: 10.1016/j.jmst.2021.11.052
|
29 |
Seo C H, Kwon K H, Choi K, et al. Deformation behavior of ferrite-austenite duplex lightweight Fe-Mn-Al-C steel [J]. Scri. Mater., 2012, 66: 519
doi: 10.1016/j.scriptamat.2011.12.026
|
30 |
Ha M C, Koo J M, Lee J K, et al. Tensile deformation of a low density Fe-27Mn-12Al-0.8C duplex steel in association with ordered phases at ambient temperature [J]. Mater. Sci. Eng., 2013, A586: 276
|
31 |
Wu Z Q. Investigations on the microstructures-properties relationship and deformation mechanism in high strength and high ductility low density steels [D]. Shenyang: Northeastern University, 2015
|
31 |
吴志强. 高强度高塑性低密度钢的组织性能和变形机制研究 [D]. 沈阳: 东北大学, 2015
|
32 |
Kim C W, Kwon S I, Lee B H, et al. Atomistic study of nano-sized κ-carbide formation and its interaction with dislocations in a cast Si added FeMnAlC lightweight steel [J]. Mater. Sci. Eng., 2016, A673: 108
|
33 |
Choo W K, Kim J H, Yoon J C. Microstructural change in austenitic Fe-30.0wt% Mn-7.8wt% Al-1.3wt% C initiated by spinodal decomposition and its influence on mechanical properties [J]. Acta Mater., 1997, 45: 4877
doi: 10.1016/S1359-6454(97)00201-2
|
34 |
Wang C S, Hwang C N, Chao C G, et al. Phase transitions in an Fe-9Al-30Mn-2.0C alloy [J]. Scr. Mater., 2007, 57: 809
doi: 10.1016/j.scriptamat.2007.07.007
|
35 |
Sato K, Tagawa K, Inoue Y. Age hardening of an Fe-30Mn-9Al-0.9C alloy by spinodal decomposition [J]. Scr. Metall., 1988, 22: 899
doi: 10.1016/S0036-9748(88)80071-1
|
36 |
Choi K, Seo C H, Lee H, et al. Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel [J]. Scr. Mater., 2010, 63: 1028
doi: 10.1016/j.scriptamat.2010.07.036
|
37 |
Chang K M, Chao C G, Liu T F. Excellent combination of strength and ductility in an Fe-9Al-28Mn-1.8C alloy [J]. Scr. Mater., 2010, 63: 162
doi: 10.1016/j.scriptamat.2010.03.038
|
38 |
Han K H, Yoon J C, Choo W K. TEM evidence of modulated structure in Fe-Mn-Al-C austenitic alloys [J]. Scr. Metall., 1986, 20: 33
doi: 10.1016/0036-9748(86)90208-5
|
39 |
Cheng W C, Cheng C Y, Hsu C W, et al. Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe-C-Mn-Al austenitic steel [J]. Mater. Sci. Eng., 2015, A642: 128
|
40 |
Wang Z W, Lu W J, Zhao H, et al. Formation mechanism of κ-carbides and deformation behavior in Si-alloyed FeMnAlC lightweight steels [J]. Acta Mater., 2020, 198: 258
doi: 10.1016/j.actamat.2020.08.003
|
41 |
Zhang J L, Jiang Y S, Zheng W S, et al. Revisiting the formation mechanism of intragranular κ-carbide in austenite of a Fe-Mn-Al-Cr-C low-density steel [J]. Scr. Mater., 2021, 199: 113836
doi: 10.1016/j.scriptamat.2021.113836
|
42 |
Liu D G, Cai M H, Ding H, et al. Control of inter/intra-granular κ-carbides and its influence on overall mechanical properties of a Fe-11Mn-10Al-1.25C low density steel [J]. Mater. Sci. Eng., 2018, A715: 25
|
43 |
Liu D G, Ding H, Cai M H, et al. Mechanical behaviors of a lower-Mn-added Fe-11Mn-10Al-1.25C lightweight steel with distinguished microstructural features [J]. Mater. Lett., 2019, 242: 131
doi: 10.1016/j.matlet.2019.01.115
|
44 |
Liu D G, Ding H, Han D, et al. Effect of grain interior and grain boundary κ-carbides on the strain hardening behavior of medium-Mn lightweight steels [J]. Mater. Sci. Eng., 2023, A871: 144861
|
45 |
Ishida K, Ohtani H, Satoh N, et al. Phase equilibria in Fe-Mn-Al-C alloys [J]. ISIJ Int., 1990, 30: 680
doi: 10.2355/isijinternational.30.680
|
46 |
Kim M S, Kang Y B. Development of thermodynamic database for high Mn-high Al steels: Phase equilibria in the Fe-Mn-Al-C system by experiment and thermodynamic modeling [J]. Calphad, 2015, 51: 89
doi: 10.1016/j.calphad.2015.08.004
|
47 |
Chin K G, Lee H J, Kwak J H, et al. Thermodynamic calculation on the stability of (Fe, Mn)3AlC carbide in high aluminum steels [J]. J. Alloys Compd., 2010, 505: 217
doi: 10.1016/j.jallcom.2010.06.032
|
48 |
Fartushna I, Bajenova I, Khvan A, et al. Experimental investigation of solidification and isothermal sections at 1000 and 1100oC in the Al-Fe-Mn-C system with special attention to the kappa-phase [J]. J. Alloys Compd., 2018, 735: 1211
doi: 10.1016/j.jallcom.2017.11.288
|
49 |
Rahnama A, Dashwood R, Sridhar S. A phase-field method coupled with CALPHAD for the simulation of ordered κ-carbide precipitates in both disordered γ and α phases in low density steel [J]. Comput. Mater. Sci., 2017, 126: 152
|
50 |
Song W W, Zhang W, von Appen J, et al. κ-phase formation in Fe-Mn-Al-C austenitic steels [J]. Steel Res. Int., 2015, 86: 1161
doi: 10.1002/srin.v86.10
|
51 |
Drouven C, Hallstedt B, Song W, et al. Experimental observation of κ-phase formation sequences by in-situ synchrotron diffraction [J]. Mater. Lett., 2019, 241: 111
doi: 10.1016/j.matlet.2019.01.062
|
52 |
Dey P, Nazarov R, Dutta B, et al. Ab initio explanation of disorder and off-stoichiometry in Fe-Mn-Al-C κ carbides [J]. Phys. Rev., 2017, 95B: 104108
|
53 |
Liu L B, Li C M, Yang Y, et al. A simple method to produce austenite-based low-density Fe-20Mn-9Al-0.75C steel by a near-rapid solidification process [J]. Mater. Sci. Eng., 2017, A679: 282
|
54 |
Ma T, Li H R, Gao J X, et al. Effect of alloying elements and aging treatment on the properties of kappa-carbide in Fe-Mn-Al-C low density steesl: A review [J]. Mater. Rep., 2020, 34: 11153
|
54 |
马 涛, 李慧蓉, 高建新 等. 合金元素及时效处理对Fe-Mn-Al-C低密度钢中κ-碳化物的影响特性综述 [J]. 材料导报, 2020, 34: 11153
|
55 |
Han D, Ding H, Liu D G, et al. Influence of C content and annealing temperature on the microstructures and tensile properties of Fe-13Mn-8Al-(0.7, 1.2)C steels [J]. Mater. Sci. Eng., 2020, A785:139286
|
56 |
Chen X P, Li W J, Ren P, et al. Effects of C content on microstructure and properties of Fe-Mn-Al-C low-density steels [J]. Acta Metall. Sin., 2019, 55: 951
|
56 |
陈兴品, 李文佳, 任 平 等. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响 [J]. 金属学报, 2019, 55: 951
doi: 10.11900/0412.1961.2019.00014
|
57 |
Li M C, Chang H, Kao P W, et al. The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe-Mn-Al-C alloys [J]. Mater. Chem. Phys., 1999, 59: 96
doi: 10.1016/S0254-0584(99)00026-7
|
58 |
Huang H, Gan D, Kao P W. Effect of alloying additions on the κ phase precipitation in austenitic Fe-Mn-Al-C alloys [J]. Scr. Metall. Mater., 1994, 30: 499
doi: 10.1016/0956-716X(94)90610-6
|
59 |
Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility [J]. Nature, 2015, 518: 77
doi: 10.1038/nature14144
|
60 |
Zhang B G, Zhang X M, Liu H T. Precipitation behavior of B2 and κ-carbide during aging and its effect on mechanical properties in Al-containing high strength steel [J]. Mater. Charact., 2021, 178: 111291
doi: 10.1016/j.matchar.2021.111291
|
61 |
Kim C, Hong H U, Jang J H, et al. Reverse partitioning of Al from κ-carbide to the γ-matrix upon Ni addition and its strengthening effect in Fe-Mn-Al-C lightweight steel [J]. Mater. Sci. Eng., 2021, A820: 141563
|
62 |
Wang Z W, Lu W J, Zhao H, et al. Ultrastrong lightweight compositionally complex steels via dual-nanoprecipitation [J]. Sci. Adv., 2020, 6: eaba9543
doi: 10.1126/sciadv.aba9543
|
63 |
Park G, Nam C H, Zargaran A, et al. Effect of B2 morphology on the mechanical properties of B2-strengthened lightweight steels [J]. Scr. Mater., 2019, 165: 68
doi: 10.1016/j.scriptamat.2019.02.013
|
64 |
Mishra B, Sarkar R, Singh V, et al. Microstructure and deformation behaviour of austenitic low-density steels: The defining role of B2 intermetallic phase [J]. Materialia, 2021, 20: 101198
doi: 10.1016/j.mtla.2021.101198
|
65 |
Yang M X, Yuan F P, Xie Q G, et al. Strain hardening in Fe-16Mn-10Al-0.86C-5Ni high specific strength steel [J]. Acta Mater., 2016, 109: 213
doi: 10.1016/j.actamat.2016.02.044
|
66 |
Rahnama A, Spooner S, Sridhar S. Control of intermetallic nano-particles through annealing in duplex low density steel [J]. Mater. Lett., 2017, 189: 13
doi: 10.1016/j.matlet.2016.11.020
|
67 |
Bartlett L N, Van Aken D C, Medvedeva J, et al. An atom probe study of kappa carbide precipitation and the effect of silicon addition [J]. Metall. Mater. Trans., 2014, 45A: 2421
|
68 |
Kim C W, Terner M, Lee J H, et al. Partitioning of C into κ-carbidesby Si addition and its effect on the initial deformation mechanism of Fe-Mn-Al-C lightweight steels [J]. J. Alloys Compd., 2019, 775: 554
doi: 10.1016/j.jallcom.2018.10.104
|
69 |
Zhi H H, Li J S, Li W M, et al. Simultaneously enhancing strength-ductility synergy and strain hardenability via Si-alloying in medium-Al FeMnAlC lightweight steels [J]. Acta Mater., 2023, 245: 118611
doi: 10.1016/j.actamat.2022.118611
|
70 |
Yang L, Li Z M, Li X, et al. An enhanced Fe-28Mn-9Al-0.8C lightweight steel by coprecipitation of nanoscale Cu-rich and κ-carbide particles [J]. Steel Res. Int., 2020, 91: 1900665
doi: 10.1002/srin.v91.7
|
71 |
Chen Z, Liu M X, Zhang J K, et al. Effect of annealing treatment on microstructures and properties of austenite-based Fe-28Mn-9Al-0.8C lightweight steel with addition of Cu [J]. China Foundry, 2021, 18: 207
doi: 10.1007/s41230-021-1026-6
|
72 |
Xie Z Q, Hui W J, Zhang Y J, et al. Effect of Cu and solid solution temperature on microstructure and mechanical properties of Fe-Mn-Al-C low-density steels [J]. J. Mater. Res. Technol., 2022, 18: 1307
doi: 10.1016/j.jmrt.2022.03.077
|
73 |
Song H, Yoo J, Kim S H, et al. Novel ultra-high-strength Cu-containing medium-Mn duplex lightweight steels [J]. Acta Mater., 2017, 135: 215
doi: 10.1016/j.actamat.2017.06.035
|
74 |
Han K H. The microstructures and mechanical properties of an austenitic Nb-bearing Fe-Mn-Al-C alloy processed by controlled rolling [J]. Mater. Sci. Eng., 2000, A279: 1
|
75 |
Park B H, Kim C W, Lee K W, et al. Role of Nb addition on microstructural stability and deformation behaviors of FeMnAlC lightweight steels at 400oC [J]. Metall. Mater. Trans., 2021, 52A: 4191
|
76 |
Ma T, Gao J X, Li H R, et al. Microband-induced plasticity in a Nb content Fe-28Mn-10Al-C low density steel [J]. Metals, 2021, 11: 345
doi: 10.3390/met11020345
|
77 |
Liu M X, Li X, Zhang Y H, et al. Multiphase precipitation and its strengthening mechanism in a V-containing austenite-based low density steel [J]. Intermetallics, 2021, 134: 107179
doi: 10.1016/j.intermet.2021.107179
|
78 |
Liu M X, Li X, Zhang Y H, et al. Precipitation of κ-carbide in a V-containing austenite-based lightweight steel [J]. Metall. Mater. Trans., 2022, 53A: 1231
|
79 |
Hu X L, Li Y L, Liu D G, et al. Mechanical behavior of Fe-12Mn-7Al-0.6C-(V) lightweight steels [J]. China Metall., 2019, 29(2): 39
|
79 |
胡小龙, 李英龙, 刘德罡 等. Fe-12Mn-7Al-0.6C-(V)轻质钢力学行为 [J]. 中国冶金, 2019, 29(2): 39
|
80 |
Moon J, Ha H Y, Kim K W, et al. A new class of lightweight, stainless steels with ultra-high strength and large ductility [J]. Sci. Rep., 2020, 10: 12140
doi: 10.1038/s41598-020-69177-7
pmid: 32699336
|
81 |
Tuan Y H, Wang C S, Tsai C Y, et al. Corrosion behaviors of austenitic Fe-30Mn-7Al-xCr-1C alloys in 3.5%NaCl solution [J]. Mater. Chem. Phys., 2009, 114: 595
doi: 10.1016/j.matchemphys.2008.10.009
|
82 |
Huang C F, Ou K L, Chen C S, et al. Research of phase transformation on Fe-8.7Al-28.3Mn-1C-5.5Cr alloy [J]. J. Alloys Compd., 2009, 488: 246
doi: 10.1016/j.jallcom.2009.08.097
|
83 |
Moon J, Park S J, Jang J H, et al. Atomistic investigations of κ-carbide precipitation in austenitic Fe-Mn-Al-C lightweight steels and the effect of Mo addition [J]. Scr. Mater., 2017, 127: 97
doi: 10.1016/j.scriptamat.2016.08.036
|
84 |
Chen C S, Lin C T, Peng P W, et al. Effects of cobalt content on the microstructures of Fe-9Al-30Mn-1C-xCo alloys [J]. J. Alloys Compd., 2010, 493: 346
doi: 10.1016/j.jallcom.2009.12.100
|
85 |
Zhao T, Chen C, Wang Y F, et al. Effect of Nb-V microalloying on low-cycle fatigue property of Fe-Mn-Al-C austenitic steel [J]. J. Mater. Res. Technol., 2023, 23: 3711
doi: 10.1016/j.jmrt.2023.02.020
|
86 |
Moon J, Jo H H, Park S J, et al. Ti-bearing lightweight steel with large high temperature ductility via thermally stable multi-phase microstructure [J]. Mater. Sci. Eng., 2021, A808: 140954
|
87 |
Yao M J, Welsch E, Ponge D, et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel [J]. Acta Mater., 2017, 140: 258
doi: 10.1016/j.actamat.2017.08.049
|
88 |
Cheng X N, Dai Q X, Wang A D. Stacking-fault energy and ε-martensite transformation of austenitic steels [J]. J. Iron Steel Res., 2003, 15(2): 55
doi: 10.1016/S1006-706X(08)60012-6
|
88 |
程晓农, 戴起勋, 王安东. 奥氏体钢层错能与ε马氏体相变 [J]. 钢铁研究学报, 2003, 15(2): 55
|
89 |
Park K T, Kim G, Kim S K, et al. On the transitions of deformation modes of fully austenitic steels at room temperature [J]. Met. Mater. Int., 2010, 16: 1
doi: 10.1007/s12540-010-0001-3
|
90 |
Byun T S. On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels [J]. Acta Mater., 2003, 51: 3063
doi: 10.1016/S1359-6454(03)00117-4
|
91 |
Welsch E, Ponge D, Hafez Haghighat S M, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel [J]. Acta Mater., 2016, 116: 188
doi: 10.1016/j.actamat.2016.06.037
|
92 |
Ding H, Li H Y, Wu Z Q, et al. Microstructural evolution and deformation behaviors of Fe-Mn-Al-C steels with different stacking fault energies [J]. Steel Res. Int., 2013, 84: 1288
doi: 10.1002/srin.201300052
|
93 |
Haase C, Zehnder C, Ingendahl T, et al. On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-weight steel [J]. Acta Mater., 2017, 122: 332
doi: 10.1016/j.actamat.2016.10.006
|
94 |
Ardell A J, Huang J C. Antiphase boundary energies and the transition from shearing to looping in alloys strengthened by ordered precipitates [J]. Philos. Mag. Lett., 1988, 58: 189
doi: 10.1080/09500838808214752
|
95 |
Yao M J, Dey P, Seol J B, et al. Combined atom probe tomography and density functional theory investigation of the Al off-stoichiometry of κ-carbides in an austenitic Fe-Mn-Al-C low density steel [J]. Acta Mater., 2016, 106: 229
doi: 10.1016/j.actamat.2016.01.007
|
96 |
Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
|
97 |
Wu X L, Zhu Y T. Heterostructured metallic materials: Plastic deformation and strain hardening [J]. Acta Metall. Sin., 2022, 58: 1349
doi: 10.11900/0412.1961.2022.00327
|
97 |
武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化 [J]. 金属学报, 2022, 58: 1349
doi: 10.11900/0412.1961.2022.00327
|
98 |
Wei X, Fu L M, Liu S C, et al. Deformation behavior of constituent phases and the affected factors in dual-phase steel [J]. Chin. J. Mater. Res., 2013, 27: 665
|
98 |
魏 兴, 付立铭, 刘世昌 等. 双相钢组成相的变形行为及其影响因素 [J]. 材料研究学报, 2013, 27: 665
|
99 |
Latypov M I, Shin S, De Cooman B C, et al. Micromechanical finite element analysis of strain partitioning in multiphase medium manganese TWIP + TRIP steel [J]. Acta Mater., 2016, 108: 219
doi: 10.1016/j.actamat.2016.02.001
|
100 |
Lim H, Dingreville R, Deibler L A, et al. Investigation of grain-scale microstructural variability in tantalum using crystal plasticity-finite element simulations [J]. Comput. Mater. Sci., 2016, 117: 437
doi: 10.1016/j.commatsci.2016.02.022
|
101 |
Tasan C C, Diehl M, Yan D, et al. Integrated experimental-simulation analysis of stress and strain partitioning in multiphase alloys [J]. Acta Mater., 2014, 81: 386
doi: 10.1016/j.actamat.2014.07.071
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|