Please wait a minute...
金属学报  2020, Vol. 56 Issue (5): 785-794    DOI: 10.11900/0412.1961.2019.00299
  本期目录 | 过刊浏览 |
温度对碳纳米管增强纳米蜂窝镍力学性能的影响
李源才, 江五贵(), 周宇
南昌航空大学航空制造工程学院 南昌 330063
Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs
LI Yuancai, JIANG Wugui(), ZHOU Yu
School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(3638 KB)   HTML
摘要: 

选取含质量分数为5.22‰碳纳米管(CNT)为代表,通过分子动力学(MD)研究了温度对纳米蜂窝镍(NNHC)和CNT增强纳米蜂窝镍(CRNNHC)在径向拉伸、径向压缩、轴向拉伸和轴向压缩下力学性能的影响。结果表明,NNHC和CRNNHC的弹性模量(E)和最终应力(σu)对温度较为敏感,都随温度升高呈近似线性下降。相比于NNHC,不同温度下CNT的添加对CRNNHC径向力学性能的增强效果并不明显,而对其轴向力学性能则起到了良好的增强作用。CRNNHC轴向拉伸与压缩时的弹性模量提升幅值分别为6.4%~10%与9%~12%,最终应力提升幅值分别为1.5%~5.3%与10%~14%。研究表明,不同温度下CRNNHC沿轴向变形的力学性能普遍要优于沿径向变形的力学性能,也预示着轴向变形时CNT被破坏前吸收的能量相对较多。

关键词 纳米蜂窝镍碳纳米管增强纳米蜂窝镍力学性能分子动力学温度效应    
Abstract

Nickel nano-honeycombs (NNHC) would be expected to an ideal anode material for solid oxide fuel cells (SOFC) because of its high surface area and highly ordered pore network. But, the anode material requires excellent mechanical properties to withstand stresses that arise during processing and service at different temperatures. The influence of temperature on the mechanical behaviors under radial (y axis) tension, radial compression, axial (z axis) tension and axial compression, is investigated by molecular dynamics (MD) by taking the carbon nanotubes (CNT)-reinforced NNHC (CRNNHC) composites with the mass fractions of CNT (ωCNT) of 5.22‰ and its corresponding NNHC as the example. The results show that the mechanical properties including elastic modulus(E) and ultimate stress (σu)in NNHC and CRNNHC both decrease approximately linearly with the increase of temperature. Compared to NNHC, the addition of CNT has no obvious effect on the enhancement of radial mechanical properties of CRNNHC under different temperatures, but it results in a good reinforced effect on axial mechanical properties. While the axial tensile and compressive elastic moduli can be increased by 6.4%~10% and 9%~12% respectively, and the ultimate stress can be increased by 1.5%~5.3% and 10%~14% respectively. The study indicates that axial mechanical properties of the CRNNHC are generally superior to their radial mechanical properties, and the energy absorption before the axial deformation is relatively larger due to the existence of CNT.

Key wordsnickel nano-honeycomb (NNHC)    CNT-reinforced NNHC (CRNNHC)    mechanical property    molecular dynamics    temperature effect
收稿日期: 2019-09-10     
ZTFLH:  TB31  
基金资助:国家自然科学基金项目(11772145);国家自然科学基金项目(11372126)
通讯作者: 江五贵     E-mail: jiangwugui@nchu.edu.cn
Corresponding author: JIANG Wugui     E-mail: jiangwugui@nchu.edu.cn
作者简介: 李源才,男,1987年生,硕士生

引用本文:

李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
Yuancai LI, Wugui JIANG, Yu ZHOU. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs. Acta Metall Sin, 2020, 56(5): 785-794.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00299      或      https://www.ams.org.cn/CN/Y2020/V56/I5/785

图1  本工作所用分子动力学(MD)模型
图2  不同温度下NNHC和CRNNHC沿径向拉伸的应力-应变曲线
图3  不同温度下NNHC和CRNNHC沿径向拉伸的力学性能
图4  不同温度下NNHC和CRNNHC沿径向压缩的应力-应变曲线
图5  不同温度下NNHC和CRNNHC沿径向压缩的力学性能
图6  不同温度下NNHC和CRNNHC沿轴向拉伸的应力-应变曲线
图7  温度为900 K时CRNNHC沿轴向拉伸原子分布图
图8  不同温度下NNHC和CRNNHC沿轴向拉伸的力学性能
图9  不同温度下轴向压缩应力-应变曲线
图10  不同温度下NNHC和CRNNHC沿轴向压缩的力学性能
图11  温度为600 K时CRNNHC在径向拉伸、径向压缩、轴向拉伸和轴向压缩变形下的原子分布图
1 Ivers-Tiffée E, Weber A, Herbstritt D. Materials and technologies for SOFC-components [J]. J. Eur. Ceram. Soc., 2001, 21: 1805
2 Xu M, Li T, Yang M, et al. Solid oxide fuel cell interconnect design optimization considering the thermal stresses [J]. Sci. Bull., 2016, 61: 1333
doi: 10.1007/s11434-016-1146-3 pmid: 27635282
3 Radovic M, Lara-Curzio E. Mechanical properties of tape cast nickel-based anode materials for solid oxide fuel cells before and after reduction in hydrogen [J]. Acta Mater., 2004, 52: 5747
doi: 10.1016/j.actamat.2004.08.023
4 Frandsen H L, Ramos T, Faes A, et al. Optimization of the strength of SOFC anode supports [J]. J. Eur. Ceram. Soc., 2012, 32: 1041
doi: 10.1016/j.jeurceramsoc.2011.11.015
5 Yu J H, Park G W, Lee S, et al. Microstructural effects on the electrical and mechanical properties of Ni-YSZ cermet for SOFC anode [J]. J. Power Sources, 2007, 163: 926
6 Ge X M, Chan S H, Liu Q L, et al. Solid oxide fuel cell anode materials for direct hydrocarbon utilization [J]. Adv. Energy Mater., 2012, 2: 1156
doi: 10.1021/ja206278f pmid: 22011010
7 Halmenschlager C M, Korb M D A, Neagu R, et al. Nanostructured YSZ thin film for application as electrolyte in an electrode supported SOFC [J]. Mater. Sci. Forum, 2012, 727-728: 873
8 Ansar A, Soysal D, Schiller G. Nanostructured functional layers for solid oxide fuel cells [J]. Int. J. Energy Res., 2010, 33: 1191
9 Tsuchiya M, Lai B K, Ramanathan S. Scalable nanostructured membranes for solid-oxide fuel cells [J]. Nat. Nanotechnol., 2011, 6: 282
doi: 10.1038/nnano.2011.43 pmid: 21460827
10 Kang S, Su P C, Park Y I, et al. Thin-film solid oxide fuel cells on porous nickel substrates with multistage nanohole array [J]. J. Electrochem. Soc., 2006, 153: A554
11 Nelson P A, Elliott J M, Attard G S, et al. Mesoporous nickel/nickel oxide—A nanoarchitectured electrode [J]. Chem. Mater., 2002, 14: 524
doi: 10.1021/cm011021a
12 Nelson P A, Owen J R. A High-performance supercapacitor/battery hybrid incorporating templated mesoporous electrodes [J]. J. Electrochem. Soc., 2003, 150: A1313
13 Treacy M M J, Ebbesen T W, Gibson J. Exceptionally high Young's modulus observed for individual carbon nanotubes [J]. Nature, 1996, 381: 678
doi: 10.1038/381678a0
14 Ebbesen T W, Lezec H J, Hiura H, et al. Electrical conductivity of individual carbon nanotubes [J]. Nature, 1996, 382: 54
doi: 10.1038/382054a0
15 Berber S, Kwon Y K, Tománek D. Unusually high thermal conductivity of carbon nanotubes [J]. Phys. Rev. Lett., 2000, 84: 4613
doi: 10.1103/PhysRevLett.84.4613 pmid: 10990753
16 Qiao Y, Li C M, Bao S J, et al. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells [J]. J. Power Sources, 2007, 170: 79
doi: 10.1016/j.bioelechem.2019.05.008 pmid: 31158799
17 Zhu W Z, Deevi S C. A review on the status of anode materials for solid oxide fuel cells [J]. Mater. Sci. Eng, 2003, A362: 228
18 Xie X, Hu L B, Pasta M, et al. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells [J]. Nano Lett., 2011, 11: 291
doi: 10.1021/nl103905t pmid: 21158405
19 Peigney A, Laurent C, Flahaut E, et al. Carbon nanotubes in novel ceramic matrix nanocomposites [J]. Ceram. Int., 2000, 26: 677
doi: 10.1038/nmat793 pmid: 12652671
20 Qian D, Dickey E C, Andrews R, et al. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites [J]. Appl. Phys. Lett., 2000, 76: 2868
doi: 10.1046/j.1365-2818.2001.00940.x pmid: 11580811
21 Curtin W A, Sheldon B W. CNT-reinforced ceramics and metals [J]. Materialstoday, 2004, 7: 44
22 Song Q S, Aravindaraj G K, Sultana H, et al. Performance improvement of pasted nickel electrodes with multi-wall carbon nanotubes for rechargeable nickel batteries [J]. Electrochim. Acta, 2007, 53: 1890
23 Jiang J, Liu J P, Zhou W W, et al. CNT/Ni hybrid nanostructured arrays: synjournal and application as high-performance electrode materials for pseudocapacitors [J]. Energy Environ. Sci., 2011, 4: 5000
24 Jang J W, Choi H J, Kwon O H, et al. Densification behavior and electrical properties of carbon nanotube-Ni nanocomposite films for co-fireable microcircuit electrodes [J]. Thin Solid Films, 2018, 660: 754
25 Liu X, Gurel V, Morris D, et al. Bioavailability of nickel in single-wall carbon nanotubes [J]. Adv. Mater., 2007, 19: 2790
26 Chen Y S, Huang J H. Arrayed CNT-Ni nanocomposites grown directly on Si substrate for amperometric detection of ethanol [J]. Biosens. Bioelectron., 2010, 26: 207
doi: 10.1016/j.bios.2010.06.016 pmid: 20637593
27 Choi T, Kim S H, Lee C W, et al. Synjournal of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing [J]. Biosens. Bioelectron., 2015, 63: 325
doi: 10.1016/j.bios.2014.07.059 pmid: 25113051
28 Lin T C, Huang B R. Palladium nanoparticles modified carbon nanotube/nickel composite rods (Pd/CNT/Ni) for hydrogen sensing [J]. Sens. Actuators, 2012, 162B: 108
29 Esfarjani K, Gorjizadeh N, Nasrollahi Z. Molecular dynamics of single wall carbon nanotube growth on nickel surface [J]. Computat. Mater. Sci., 2006, 36: 117
doi: 10.1166/jnn.2004.063 pmid: 15296231
30 Shibuta Y, Maruyama S. A molecular dynamics study of the effect of a substrate on catalytic metal clusters in nucleation process of single-walled carbon nanotubes [J]. Chem. Phys. Lett., 2007, 437: 218
doi: 10.1016/j.cplett.2007.02.019
31 Oguri T, Shimamura K, Shibuta Y, et al. Ab initio molecular dynamics simulation of the dissociation of ethanol on a nickel cluster: Understanding the initial stage of metal-catalyzed growth of carbon nanotubes [J]. J. Phys. Chem., 2013, 117C: 9983
32 Fukuhara S, Shimojo F, Shibuta Y. Conformation and catalytic activity of nickel-carbon cluster for ethanol dissociation in carbon nanotube synjournal: Ab initio molecular dynamics simulation [J]. Chem. Phys. Lett., 2017, 679: 164
33 Song H Y, Zha X W. Influence of nickel coating on the interfacial bonding characteristics of carbon nanotube-aluminum composites [J]. Comput. Mater. Sci., 2010, 49: 899
34 Song H Y, Zha X W. Mechanical properties of nickel-coated single-walled carbon nanotubes and their embedded gold matrix composites [J]. Phys. Lett., 2010, 374A: 1068
35 Zhou X, Song S Y, Li L, et al. Molecular dynamics simulation for mechanical properties of magnesium matrix composites reinforced with nickel-coated single-walled carbon nanotubes [J]. J. Compos. Mater., 2015, 50: 191
36 Duan K, Li L, Hu Y J, et al. Enhanced interfacial strength of carbon nanotube/copper nanocomposites via Ni-coating: Molecular-dynamics insights [J]. Physica, 2017, 88E: 259
doi: 10.1111/j.1755-3768.2010.01997.x pmid: 20977690
37 Zhang H F, Yan H L, Jia N, et al. Exploring plastic deformation mechanism of multilayered Cu/Ti composites by using molecular dynamics modeling [J]. Acta Metall. Sin., 2018, 54: 1333
37 张海峰, 闫海乐, 贾 楠等. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究 [J]. 金属学报, 2018, 54: 1333
38 Zhou Y, Jiang W G, Li D S, et al. Study on lightweight and strengthening effect of carbon nanotube in highly ordered nanoporous nickel: A molecular dynamics study [J]. Appl. Sci., 2019, 9: 352
39 Atkinson A, Barnett S, Gorte R J, et al. Advanced anodes for high-temperature fuel cells [J]. Nat. Mater., 2004, 3: 17
doi: 10.1038/nmat1040 pmid: 14704781
40 Foiles S M, Baskes M I, Daw M S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys [J]. Phys. Rev., 1986, 33B: 7983
41 Stuart S J, Tutein A B, Harrison J A. A reactive potential for hydrocarbons with intermolecular interactions [J]. J. Chem. Phys., 2000, 112: 6472
42 Lennard-Jones J E. Cohesion [J]. Proc. Phys. Soc., 1931, 43: 461
43 Boda D, Henderson D. The effects of deviations from Lorentz-Berthelot rules on the properties of a simple mixture [J]. Mol. Phys., 2008, 106: 2367
44 Kutana A, Giapis K P. Transient deformation regime in bending of single-walled carbon nanotubes [J]. Phys. Rev. Lett., 2006, 97: 245501
doi: 10.1103/PhysRevLett.97.245501 pmid: 17280296
45 Jiang L Y, Huang Y, Jiang H, et al. A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force [J]. J. Mech. Phys. Solids, 2006, 54: 2436
46 Choi B K, Yoon G H, Lee S. Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading [J]. Composites, 2016, 91B: 119
47 Yi L J, Chang T C, Feng X Q, et al. Giant energy absorption capacity of graphene-based carbon honeycombs [J]. Carbon, 2017, 118: 348
48 Zhou Y, Jiang W G, Feng X Q, et al. In-plane compressive behavior of graphene-coated aluminum nano-honeycombs [J]. Comput. Mater. Sci., 2019, 156: 396
49 Wen Y H, Zhu Z Z, Zhu R Z. Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects [J]. Comput. Mater. Sci., 2008, 41: 553
50 Wen Y H, Zhang Y, Zhu Z Z. Size-dependent effects on equilibrium stress and strain in nickel nanowires [J]. Phys. Rev., 2007, 76B: 125423
51 Rezaei R, Shariati M, Tavakoli-Anbaran H, et al. Mechanical characteristics of CNT-reinforced metallic glass nanocomposites by molecular dynamics simulations [J]. Comput. Mater. Sci., 2016, 119: 19
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[4] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[5] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[6] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[7] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[8] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[9] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[10] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[11] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[12] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[13] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[14] 马小强,杨坤杰,徐喻琼,杜晓超,周建军,肖仁政. 金属Nb级联碰撞的分子动力学模拟[J]. 金属学报, 2020, 56(2): 249-256.
[15] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.