Please wait a minute...
金属学报  2020, Vol. 56 Issue (5): 769-775    DOI: 10.11900/0412.1961.2019.00330
  本期目录 | 过刊浏览 |
(CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能
姚小飞(), 魏敬鹏, 吕煜坤, 李田野
西安工业大学材料与化工学院 西安 710021
Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy
YAO Xiaofei(), WEI Jingpeng, LV Yukun, LI Tianye
School of Materials Science and Chemical Engineering, Xi′an Technologcal University, Xi′an 710021, China
引用本文:

姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
Xiaofei YAO, Jingpeng WEI, Yukun LV, Tianye LI. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. Acta Metall Sin, 2020, 56(5): 769-775.

全文: PDF(2496 KB)   HTML
摘要: 

为了研究σ相(CrMo相)对(CoCrFeMnNi)97.02Mo2.98高熵合金力学性能的影响规律,对(CoCrFeMnNi)97.02-Mo2.98高熵合金进行退火热处理,利用SEM、EDS、XRD等方法分析了(CoCrFeMnNi)97.02Mo2.98高熵合金析出σ相的演变规律,采用显微硬度及拉伸实验测试了其力学性能,研究了σ相对其力学性能的影响机制。结果表明,随着退火温度的升高,(CoCrFeMnNi)97.02Mo2.98高熵合金析出σ相量增多,且在晶界处先析出,后在晶内析出,晶界第二相形态由细小条状断续分布,逐渐变为粗大条状连续分布,随着温度进一步升高,由条状连续分布转变为颗粒状断续分布。(CoCrFeMnNi)97.02Mo2.98高熵合金退火处理析出σ相具有明显的第二相强化作用,随着退火温度的升高,硬度及强度均增大,当温度高于900 ℃尤为显著。σ相在晶内析出及其细化,能够促进合金强度与塑性同步提高。

关键词 CoCrFeMnNi高熵合金Mo退火σ相(CrMo相)力学性能    
Abstract

Mo in the form of solid solution atom or compound phase is distributed in CoCrFeMnNi high entropy alloy, which has the effect of solution strengthening or second phase strengthening. The method of annealing was used to heat treated (CoCrFeMnNi)97.02Mo2.98 high entropy alloy to investigate effects of σ phase on mechanical properties of (CoCrFeMnNi)97.02Mo2.98 high entropy alloy. SEM, EDS and XRD were used to analyze effects of annealing temperature on precipitation σ phase (CrMo phase) in (CoCrFeMnNi)97.02Mo2.98 high entropy alloy. The mechanical properties were tested by microhardness and tensile test, and the influencing mechanism of σ phase on the mechanical properties was investigated. The results show that with increase of the annealing temperature, the quantity of precipitation σ phase increases in (CoCrFeMnNi)97.02Mo2.98 high entropy alloy, and the σ phase is first precipitated at the grain boundary, and is after precipitated in intracrystalline. The morphologies of σ phase at the grain boundary are changed gradually from tiny strips of discontinuous distribution to thick strip of continuous distribution. With the annealing temperature increases further, the morphologies of σ phase are changed from strip of continuous distribution to granular of continuous distribution. The precipitation σ phases in (CoCrFeMnNi)97.02Mo2.98 high entropy alloy by annealing have the effect of second phase reinforcement, with the annealing temperature increase, the numbers of precipitation σ phase increase, and the hardness and strength both increase, which is obviously at temperature higher than 900 ℃. The σ phase precipitation in intracrystalline, and its refinement, can improve the strength and plasticity of (CoCrFeMnNi)97.02Mo2.98 high entropy alloy synchronously.

Key wordsCoCrFeMnNi high entropy alloy    Mo    annealing    σ phase (CrMo phase)    mechanical property
收稿日期: 2019-09-29     
ZTFLH:  TG156.1  
基金资助:国家自然科学基金项目(51901167);陕西省教育厅科研专项基金项目(2018JK0396);陕西省自然科学基础研究计划项目(2017JM5057)
作者简介: 姚小飞,男,1978年生,博士
图1  不同温度退火热处理后(CoCrFeMnNi)97.02Mo2.98高熵合金微观组织的SEM像
Annealing temperaturePositionAtomic fraction / %
CoCrFeMnNiMo
700119.8620.9121.0916.6918.063.39
216.3528.3917.0215.7710.8211.64
800120.2521.4221.8415.7917.533.18
217.0630.3317.3415.309.9710.00
900120.7320.6620.7315.9217.563.40
217.1828.3315.8417.0611.1210.47
1000119.4720.4220.7118.6217.723.06
216.4128.6716.2616.2911.7510.63
表1  不同温度退火热处理后(CoCrFeMnNi)97.02Mo2.98高熵合金的EDS结果
图2  不同温度退火热处理后(CoCrFeMnNi)97.02Mo2.98高熵合金的XRD谱
图3  不同温度退火热处理后(CoCrFeMnNi)97.02Mo2.98高熵合金的显微硬度
图4  不同温度退火热处理后(CoCrFeMnNi)97.02Mo2.98高熵合金的工程应力-应变曲线
Temperature / ℃σs / MPaσb / MPaδ / %
70025351052.7
80025451349.4
90026256243.8
100032658248.3
表2  不同温度退火热处理后(CoCrFeMnNi)97.02Mo2.98高熵合金的拉伸性能
图5  不同温度退火热处理后(CoCrFeMnNi)97.02Mo2.98高熵合金的拉伸断口形貌
1 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater Sci. Eng., 2004, A375: 213
2 Senkov O N, Woodward C, Miracle D B. Microstructure and properties of aluminum-containing refractory high-entropy alloys [J]. JOM, 2014, 66: 2030
doi: 10.1007/s11837-014-1066-0
3 Stepanov N D, Yurchenko N Y, Skibin D V, et al. Structure and mechanical properties of the AlCrxNbTiV (x=0, 0.5, 1, 1.5) high entropy alloys [J]. J. Alloys Compd., 2015, 652: 266
doi: 10.1016/j.jallcom.2015.08.224
4 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581 pmid: 25190791
5 Otto F, Dlouhy A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
doi: 10.1016/j.actamat.2013.06.018
6 Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602 pmid: 26830651
7 Coury F G, Butler T, Chaput K, et al. Phase equilibria, mechanical properties and design of quaternary refractory high entropy alloys [J]. Mater. Des., 2018, 155: 244
doi: 10.1016/j.matdes.2018.06.003
8 Daoud H M, Manzoni A M, Wanderka N, et al. High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy) [J]. JOM, 2015, 67: 2271
doi: 10.1007/s11837-015-1484-7
9 Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J]. Acta Mater., 2011, 59: 6308
doi: 10.1016/j.actamat.2011.06.041
10 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
11 Shahmir H, He J Y, Lu Z P, et al. Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion [J]. Mater. Sci. Eng., 2016, A676: 294
12 Lu Z P, Lei Z F, Huang H D, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
12 吕昭平, 雷智锋, 黄海龙等. 高熵合金的变形行为及强韧化 [J], 金属学报, 2018, 54: 1553
13 Rogal L, Kalita D, Tarasek A, et al. Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy [J]. J. Alloys Compd., 2017, 708: 344
14 Rogal L, Kalita D, Litynska-Dobrzynska L. CoCrFeMnNi high entropy alloy matrix nanocomposite with addition of Al2O3 [J]. Intermetallics, 2017, 86: 104
15 He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
16 Chen S T, Tang WY, Kuo Y F, et al. Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys [J]. Mater. Sci. Eng., 2010, A527: 5818
17 Zhu J M, Zhang H F, Fu H M, et al. Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys [J]. Mater. Sci. Eng., 2010, A527: 6975
18 Dong Y, Lu Y P, Kong J R, et al. Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys [J]. J. Alloys Compd., 2013, 573: 96
19 Stepanov N D, Shaysultanov D G, Ozerov M S, et al. Second phase formation in the CoCrFeNiMn high entropy alloy after recrystallization annealing [J]. Mater. Lett., 2016, 185: 1
20 Ming K S, Bi X F, Wang J. Precipitation strengthening of ductile Cr15Fe20Co35Ni20Mo10 alloys [J]. Scr. Mater., 2017, 137: 88
21 Liu W H, Lu Z P, He J Y, et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases [J]. Acta Mater., 2016, 116: 332
22 Yao X F, Wei J P, Li T Y. Effects of Mo element on microstructure and mechanical properties of CoCrFeMnNi high entropy alloys [J]. IOP Conf. Series: Mater. Sci. Eng., 2019, 585: 012019
23 Li T Y, Yao X F, Lv Y K, et al. Effect of heat treatment on microstructure and properties of CoCrFeMnNi-5%Mo high entropy alloy [J]. J. Xi'an Technol. Univ., 2019, 39: 80
23 李田野, 姚小飞, 吕煜坤等. 热处理对CoCrFeMnNi-5%Mo高熵合金组织及性能的影响 [J]. 西安工业大学学报, 2019, 39: 80
24 Firstov S A, Rogul' T G, Krapivka N A, et al. Structural features and solid-solution hardening of high-entropy CrMnFeCoNi alloy [J]. Powder Metall. Met. Ceram., 2016, 55: 225
25 Qin G, Chen R R, Zheng H T, et al. Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition [J]. J. Mater Sci. Technol., 2019, 35: 578
26 Fu J X, Cao C M, Tong W, et al. Effect of thermomechanical processing on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 931
27 Thurston K V S, Gludovatz B, Yu Q, et al. Temperature and load-ratio dependent fatigue-crack growth in the CrMnFeCoNi high-entropy alloy [J]. J. Alloys Compd., 2019, 794: 525
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.