Please wait a minute...
金属学报  2020, Vol. 56 Issue (5): 769-775    DOI: 10.11900/0412.1961.2019.00330
  本期目录 | 过刊浏览 |
(CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能
姚小飞(), 魏敬鹏, 吕煜坤, 李田野
西安工业大学材料与化工学院 西安 710021
Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy
YAO Xiaofei(), WEI Jingpeng, LV Yukun, LI Tianye
School of Materials Science and Chemical Engineering, Xi′an Technologcal University, Xi′an 710021, China
全文: PDF(2496 KB)   HTML
摘要: 

为了研究σ相(CrMo相)对(CoCrFeMnNi)97.02Mo2.98高熵合金力学性能的影响规律,对(CoCrFeMnNi)97.02-Mo2.98高熵合金进行退火热处理,利用SEM、EDS、XRD等方法分析了(CoCrFeMnNi)97.02Mo2.98高熵合金析出σ相的演变规律,采用显微硬度及拉伸实验测试了其力学性能,研究了σ相对其力学性能的影响机制。结果表明,随着退火温度的升高,(CoCrFeMnNi)97.02Mo2.98高熵合金析出σ相量增多,且在晶界处先析出,后在晶内析出,晶界第二相形态由细小条状断续分布,逐渐变为粗大条状连续分布,随着温度进一步升高,由条状连续分布转变为颗粒状断续分布。(CoCrFeMnNi)97.02Mo2.98高熵合金退火处理析出σ相具有明显的第二相强化作用,随着退火温度的升高,硬度及强度均增大,当温度高于900 ℃尤为显著。σ相在晶内析出及其细化,能够促进合金强度与塑性同步提高。

关键词 CoCrFeMnNi高熵合金Mo退火σ相(CrMo相)力学性能    
Abstract

Mo in the form of solid solution atom or compound phase is distributed in CoCrFeMnNi high entropy alloy, which has the effect of solution strengthening or second phase strengthening. The method of annealing was used to heat treated (CoCrFeMnNi)97.02Mo2.98 high entropy alloy to investigate effects of σ phase on mechanical properties of (CoCrFeMnNi)97.02Mo2.98 high entropy alloy. SEM, EDS and XRD were used to analyze effects of annealing temperature on precipitation σ phase (CrMo phase) in (CoCrFeMnNi)97.02Mo2.98 high entropy alloy. The mechanical properties were tested by microhardness and tensile test, and the influencing mechanism of σ phase on the mechanical properties was investigated. The results show that with increase of the annealing temperature, the quantity of precipitation σ phase increases in (CoCrFeMnNi)97.02Mo2.98 high entropy alloy, and the σ phase is first precipitated at the grain boundary, and is after precipitated in intracrystalline. The morphologies of σ phase at the grain boundary are changed gradually from tiny strips of discontinuous distribution to thick strip of continuous distribution. With the annealing temperature increases further, the morphologies of σ phase are changed from strip of continuous distribution to granular of continuous distribution. The precipitation σ phases in (CoCrFeMnNi)97.02Mo2.98 high entropy alloy by annealing have the effect of second phase reinforcement, with the annealing temperature increase, the numbers of precipitation σ phase increase, and the hardness and strength both increase, which is obviously at temperature higher than 900 ℃. The σ phase precipitation in intracrystalline, and its refinement, can improve the strength and plasticity of (CoCrFeMnNi)97.02Mo2.98 high entropy alloy synchronously.

Key wordsCoCrFeMnNi high entropy alloy    Mo    annealing    σ phase (CrMo phase)    mechanical property
收稿日期: 2019-09-29     
ZTFLH:  TG156.1  
基金资助:国家自然科学基金项目(51901167);陕西省教育厅科研专项基金项目(2018JK0396);陕西省自然科学基础研究计划项目(2017JM5057)
通讯作者: 姚小飞     E-mail: yaoxiaofei@xatu.edu.cn
Corresponding author: YAO Xiaofei     E-mail: yaoxiaofei@xatu.edu.cn
作者简介: 姚小飞,男,1978年生,博士

引用本文:

姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
Xiaofei YAO, Jingpeng WEI, Yukun LV, Tianye LI. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy. Acta Metall Sin, 2020, 56(5): 769-775.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00330      或      https://www.ams.org.cn/CN/Y2020/V56/I5/769

图1  不同温度退火热处理后(CoCrFeMnNi)97.02Mo2.98高熵合金微观组织的SEM像
Annealing temperaturePositionAtomic fraction / %
CoCrFeMnNiMo
700119.8620.9121.0916.6918.063.39
216.3528.3917.0215.7710.8211.64
800120.2521.4221.8415.7917.533.18
217.0630.3317.3415.309.9710.00
900120.7320.6620.7315.9217.563.40
217.1828.3315.8417.0611.1210.47
1000119.4720.4220.7118.6217.723.06
216.4128.6716.2616.2911.7510.63
表1  不同温度退火热处理后(CoCrFeMnNi)97.02Mo2.98高熵合金的EDS结果
图2  不同温度退火热处理后(CoCrFeMnNi)97.02Mo2.98高熵合金的XRD谱
图3  不同温度退火热处理后(CoCrFeMnNi)97.02Mo2.98高熵合金的显微硬度
图4  不同温度退火热处理后(CoCrFeMnNi)97.02Mo2.98高熵合金的工程应力-应变曲线
Temperature / ℃σs / MPaσb / MPaδ / %
70025351052.7
80025451349.4
90026256243.8
100032658248.3
表2  不同温度退火热处理后(CoCrFeMnNi)97.02Mo2.98高熵合金的拉伸性能
图5  不同温度退火热处理后(CoCrFeMnNi)97.02Mo2.98高熵合金的拉伸断口形貌
1 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater Sci. Eng., 2004, A375: 213
2 Senkov O N, Woodward C, Miracle D B. Microstructure and properties of aluminum-containing refractory high-entropy alloys [J]. JOM, 2014, 66: 2030
doi: 10.1007/s11837-014-1066-0
3 Stepanov N D, Yurchenko N Y, Skibin D V, et al. Structure and mechanical properties of the AlCrxNbTiV (x=0, 0.5, 1, 1.5) high entropy alloys [J]. J. Alloys Compd., 2015, 652: 266
doi: 10.1016/j.jallcom.2015.08.224
4 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581 pmid: 25190791
5 Otto F, Dlouhy A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
doi: 10.1016/j.actamat.2013.06.018
6 Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602 pmid: 26830651
7 Coury F G, Butler T, Chaput K, et al. Phase equilibria, mechanical properties and design of quaternary refractory high entropy alloys [J]. Mater. Des., 2018, 155: 244
doi: 10.1016/j.matdes.2018.06.003
8 Daoud H M, Manzoni A M, Wanderka N, et al. High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy) [J]. JOM, 2015, 67: 2271
doi: 10.1007/s11837-015-1484-7
9 Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J]. Acta Mater., 2011, 59: 6308
doi: 10.1016/j.actamat.2011.06.041
10 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
11 Shahmir H, He J Y, Lu Z P, et al. Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion [J]. Mater. Sci. Eng., 2016, A676: 294
12 Lu Z P, Lei Z F, Huang H D, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
12 吕昭平, 雷智锋, 黄海龙等. 高熵合金的变形行为及强韧化 [J], 金属学报, 2018, 54: 1553
13 Rogal L, Kalita D, Tarasek A, et al. Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy [J]. J. Alloys Compd., 2017, 708: 344
14 Rogal L, Kalita D, Litynska-Dobrzynska L. CoCrFeMnNi high entropy alloy matrix nanocomposite with addition of Al2O3 [J]. Intermetallics, 2017, 86: 104
15 He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
16 Chen S T, Tang WY, Kuo Y F, et al. Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys [J]. Mater. Sci. Eng., 2010, A527: 5818
17 Zhu J M, Zhang H F, Fu H M, et al. Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys [J]. Mater. Sci. Eng., 2010, A527: 6975
18 Dong Y, Lu Y P, Kong J R, et al. Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys [J]. J. Alloys Compd., 2013, 573: 96
19 Stepanov N D, Shaysultanov D G, Ozerov M S, et al. Second phase formation in the CoCrFeNiMn high entropy alloy after recrystallization annealing [J]. Mater. Lett., 2016, 185: 1
20 Ming K S, Bi X F, Wang J. Precipitation strengthening of ductile Cr15Fe20Co35Ni20Mo10 alloys [J]. Scr. Mater., 2017, 137: 88
21 Liu W H, Lu Z P, He J Y, et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases [J]. Acta Mater., 2016, 116: 332
22 Yao X F, Wei J P, Li T Y. Effects of Mo element on microstructure and mechanical properties of CoCrFeMnNi high entropy alloys [J]. IOP Conf. Series: Mater. Sci. Eng., 2019, 585: 012019
23 Li T Y, Yao X F, Lv Y K, et al. Effect of heat treatment on microstructure and properties of CoCrFeMnNi-5%Mo high entropy alloy [J]. J. Xi'an Technol. Univ., 2019, 39: 80
23 李田野, 姚小飞, 吕煜坤等. 热处理对CoCrFeMnNi-5%Mo高熵合金组织及性能的影响 [J]. 西安工业大学学报, 2019, 39: 80
24 Firstov S A, Rogul' T G, Krapivka N A, et al. Structural features and solid-solution hardening of high-entropy CrMnFeCoNi alloy [J]. Powder Metall. Met. Ceram., 2016, 55: 225
25 Qin G, Chen R R, Zheng H T, et al. Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition [J]. J. Mater Sci. Technol., 2019, 35: 578
26 Fu J X, Cao C M, Tong W, et al. Effect of thermomechanical processing on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 931
27 Thurston K V S, Gludovatz B, Yu Q, et al. Temperature and load-ratio dependent fatigue-crack growth in the CrMnFeCoNi high-entropy alloy [J]. J. Alloys Compd., 2019, 794: 525
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[5] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[6] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[7] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[8] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[9] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[10] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[11] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[12] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[13] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[14] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.
[15] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.