Please wait a minute...
金属学报  2020, Vol. 56 Issue (2): 231-239    DOI: 10.11900/0412.1961.2019.00150
  研究论文 本期目录 | 过刊浏览 |
感应加热异温轧制制备钢/铝复合板
肖宏,许朋朋,祁梓宸(),吴宗河,赵云鹏
燕山大学国家冷轧板带装备及工艺工程技术研究中心 秦皇岛 066004
Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating
XIAO Hong,XU Pengpeng,QI Zichen(),WU Zonghe,ZHAO Yunpeng
National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China
引用本文:

肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
Hong XIAO, Pengpeng XU, Zichen QI, Zonghe WU, Yunpeng ZHAO. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. Acta Metall Sin, 2020, 56(2): 231-239.

全文: PDF(10940 KB)   HTML
摘要: 

采取感应加热的方法异温轧制制备钢/铝复合板,整个过程处于一种Ar气保护氛围,研究了钢/铝复合板的结合性能和微观组织,并与冷轧工艺进行对比,分析了异温轧制工艺对结合性能的影响。结果表明:异温轧制的复合板由于钢层加热温度高于钢的动态再结晶温度,轧后碳钢组织出现等轴晶粒,发生了动态回复和再结晶,并且在钢侧近界面处产生一层平均晶粒尺寸约为5 μm的等轴细晶区,相比于冷轧复合板,大大降低了复合板的加工硬化现象。异温轧制的钢/铝复合板微观界面贴合紧密,无孔洞和间隙,跨界面的Al和Fe元素扩散宽度达到2.4 μm,复合板达到了良好的冶金结合状态,并且近界面的细晶区改善了板材性能,使得异温轧制复合板的剪切强度远高于冷轧板,在45%压下率下达到了85 MPa,是同等压下率冷轧复合板剪切强度(12 MPa)的7倍,冷轧板断裂发生在钢/铝结合面处,为脆性断裂,而异温轧制的复合板断裂发生在铝合金基体,剪切断面存在大量韧窝,呈现塑性断裂特征。

关键词 钢/铝复合板感应加热异温轧制剪切强度显微组织    
Abstract

Both cold-rolled and hot-rolled steel/aluminum laminated composites exhibited obvious strain-hardening of steel layer because the rolling temperature, limited by the melting point of aluminum (about 660 ℃), was lower than dynamic recrystallization temperature of steel (about 710 ℃). This led to poor deformation ability of composite plates and subsequent processing cracks. And the initial bonding of cold-rolled steel/aluminum composite plates usually required more than 50% highly first pass reduction, which resulted in high requirement for rolling mill capacity, especially for medium or thick size composite plates. To solve above two problems simultaneously, in this study, the steel/aluminum composite plates were prepared by differential temperature rolling (DTR) with induction heating in an argon atmosphere. The bonding properties and microstructure of the steel/aluminum laminated composites were studied, and the effect of DTR process on the bonding properties was analyzed compared with the cold rolling process. The results show that dynamic recovery and recrystallization occurred with equiaxed grains appearing in the structure of the rolled carbon steel due to the higher heating temperature of the steel layer, and an equiaxed fine grain zone with an average grain size of approximately 5 μm was formed near the interface of the steel side, which greatly reduced the hardening phenomenon of the laminated composites compared with the cold rolled clad plate. The micro-interface of DTR steel/aluminum clad plate was tightly bonded without holes and gaps. The diffusion width of Al and Fe elements across the interface reached 2.4 μm, indicating the clad plate achieved a good metallurgical bonding state, and the fine grained zone near the interface improved the properties of the sheet. The combined effect made the shear strength of the DTR clad plates much higher than that of the cold-rolled plate. At 45% reduction, the shear strength of DTR composite plate reached 85 MPa, which was 7 times of cold-rolled composite plate with the same reduction (12 MPa). The fracture of cold-rolled composite plate occurred at the steel/aluminum interface, showing brittle fracture, while the fracture of DTR clad plates occurred in the aluminum alloy matrix with a large number of dimples in the shear section, showing the characteristics of plastic fracture.

Key wordssteel/aluminum composite plate    induction heating    differential temperature rolling    shear strength    microstructure
收稿日期: 2019-05-08     
ZTFLH:  TG335.81  
基金资助:国家自然科学基金项目(51474190);河北省研究生创新项目(CXZZBS2019046)
作者简介: 肖 宏,男,1962年生,教授,博士
MaterialCSPMnSiFeTiCrZnCuMgAl
Q2350.050.010.0150.350.12Bal.------
6061---0.150.660.750.120.200.250.151.15Bal.
表1  普碳钢Q235和6061铝合金的化学成分 (mass fraction / %)

Material

Ultimate tensile strength

MPa

Yield strength

MPa

Shear strength

MPa

Fracture elongation

%

Q235351±5235±4197±436.5±1.5
6061215±4141±3124±324.7±0.8
表2  普碳钢Q235和6061铝合金的力学性能
图1  组坯方式示意图
图2  感应加热异温轧制工艺示意图
图3  不同感应电流和钢-铝间隙下各层板的温度变化
图4  复合板拉剪测试和界面观察
图5  不同压下率下感应加热异温轧制和冷轧钢/铝复合板的剪切强度
图6  不同工艺下钢/铝复合板结合界面的SEM像
图7  异温轧制制备的复合板钢层显微金相组织
图8  异温轧制复合板跨界面元素扩散曲线图
图9  异温轧制和冷轧工艺下元素扩散宽度
图10  45%压下率下异温轧制和冷轧复合板的拉剪断口形貌及EDS面扫描图
PositionFeAlC
195.92.91.2
295.83.40.8
30.699.00.4
40.898.70.5
52.397.50.2
60.299.70.1
表3  图10中点1~6的EDS分析 (mass fraction / %)
[1] Liu G. Applications of steel-aluminum compound track in construction of line Daxing in Beijing urban mass transit [J]. Rail. Stand. Des., 2011, (1): 119
[1] (刘 岗. 钢铝复合轨在北京市轨道交通大兴线工程中的应用 [J]. 铁道标准设计, 2011, (1): 119)
[2] Wang C, Wang L Y, Zhao H Q, et al. Application of steel-aluminum composite plate-beam structure in car body [J]. Sci. Technol. Inform., 2012, (35): 140
[2] (王 冲, 王立颖, 赵鹤群等. 钢铝复合板梁式结构在车体上的应用 [J]. 科技信息, 2012, (35): 140)
[3] Han H D, Zhang P, Du Y H, et al. Research on manufacture for steel-backed aluminum-matrix bearing material [J]. Intern. Combust. Eng. Parts, 2008, (3): 18
[3] (韩海东, 张 鹏, 杜云慧等. 钢背铝基轴瓦材料复合新工艺探索 [J]. 内燃机配件, 2008, (3): 18)
[4] Liu L X. Corrosion and protection of joint of steel-Al explosive cladding [J]. Ordn. Mater. Sci. Eng., 2003, 26(1): 36
[4] (刘玲霞. 钢-铝爆炸复合接头材料的腐蚀与防护 [J]. 兵器材料科学与工程, 2003, 26(1): 36)
[5] Shiran M K G, Khalaj G, Pouraliakbar H, et al. Effects of heat treatment on the intermetallic compounds and mechanical properties of the stainless steel 321-aluminum 1230 explosive-welding interface [J]. Int. J. Min. Met. Mater., 2017, 24: 1267
[6] Song L, Sun B Y, Cui P P. Study on steel/aluminum solid-liquid composite casting and rolling [J]. Hot Work. Technol, 2018, 47(4): 126
[6] (宋 黎, 孙斌煜, 崔鹏鹏. 钢/铝固液复合铸轧研究 [J]. 热加工工艺, 2018, 47(4): 126)
[7] Grydin O, Gerstein G, Nürnberger F, et al. Twin-roll casting of aluminum-steel clad strips [J]. J. Manuf. Process., 2013, 15: 501
[8] Movahedi M, Kokabi A H, Seyed Reihani S M. Investigation on the bond strength of Al-1100/St-12 roll bonded sheets, optimization and characterization [J]. Mater. Des., 2011, 32: 3143
[9] Manesh H D, Taheri A K. Study of mechanisms of cold roll welding of aluminium alloy to steel strip [J]. Mater. Sci. Technol., 2004, 20: 1064
[10] Manesh H D, Shahabi H S. Effective parameters on bonding strength of roll bonded Al/St/Al multilayer strips [J]. J. Alloys Compd., 2009, 476: 292
[11] Wang C Y, Jiang Y B, Xi J X, et al. Interface formation and bonding mechanism of embedded aluminum-steel composite sheet during cold roll bonding [J]. Mater. Sci. Eng., 2017, A708: 50
[12] Wang C Y, Jiang Y B, Xie J X, et al. Effect of the steel sheet surface hardening state on interfacial bonding strength of embedded aluminum-steel composite sheet produced by cold roll bonding process [J]. Mater. Sci. Eng., 2016, A652: 51
[13] Wu B, Li L, Xia C D, et al. Effect of surface nitriding treatment in a steel plate on the interfacial bonding strength of the aluminum/steel clad sheets by the cold roll bonding process [J]. Mater. Sci. Eng., 2017, A682: 270
[14] Gao C, Li L, Chen X, et al. The effect of surface preparation on the bond strength of Al-St strips in CRB process [J]. Mater. Des., 2016, 107: 205
[15] Wang C Y, Liu X H, Jiang Y B, et al. Effects of annealing and cold roll-bonded interface on the microstructure and mechanical properties of the embedded aluminum-steel composite sheet [J]. Sci. Bull., 2018, 63: 1448
[16] Chen X, Li L, Zhou D J. Review on the formation and inhibition mechanism of Fe-Al intermetallic compound [J]. Mater. Rev., 2016, 30(13): 125
[16] (陈 鑫, 李 龙, 周德敬. 铝钢金属间化合物生长及其抑制机理的研究现状 [J]. 材料导报, 2016, 30(13): 125)
[17] Tang C L, Xu Q P, Weng H, et al. Influence of the surface treatment process on bonding properties of Al/steel(4A60/08AL) clad sheets by cold roll bonding [J]. Light Alloy Fabric. Technol., 2016, 44(6): 25
[17] (唐超兰, 许秋平, 翁 浩等. 表面处理工艺对冷轧铝/钢(4A60/08AL)复合板结合性能的影响 [J]. 轻合金加工技术, 2016, 44(6): 25)
[18] Li M Q, Jiang F L, Zhang H, et al. Deformation rule of steel/aluminum metal-laminate material during hot roll bonding [J]. Chin. J. Nonferrous Met., 2009, 19: 644
[18] (李民权, 蒋福林, 张 辉等. 钢/铝复合板热轧复合变形规律 [J]. 中国有色金属学报, 2009, 19: 644)
[19] Nezhad M S A, Ardakani A H. A study of joint quality of aluminum and low carbon steel strips by warm rolling [J]. Mater. Des., 2009, 30: 1103
[20] Yu J M, Yu Z S, Qi K M, et al. Bonding mechanism of steel-Al clad plate by rolling at different temperature [J]. Iron Steel, 1995, 30(8): 44
[20] (于九明, 于长生, 齐克敏等. 钢和铝异温轧制复合机理的研究 [J]. 钢铁, 1995, 30(8): 44)
[21] Xiao H, Qi Z C, Yu C, et al. Preparation and properties for Ti/Al clad plates generated by differential temperature rolling [J]. J. Mater. Process. Technol., 2017, 249: 285
[22] Qi Z C, Yu C, Xiao H. Microstructure and bonding properties of magnesium alloy AZ31/CP-Ti clad plates fabricated by rolling bonding [J]. J. Manuf. Processes., 2018, 32: 175
[23] Jiao H, Zhang M, Yan Z J. Study on binding property of steel/aluminum laminated sheets fabricated by two-pass hot rolling [J]. New Technol. New Processes, 2015, (8): 95
[23] (焦 宏, 张 敏, 闫中建. 两道次热轧法制备钢/铝复合板的结合性能研究 [J]. 新技术新工艺, 2015, (8): 95)
[24] Li L, Zeng X Y, Chen X, et al. Influence of heat treatment on microstructure and mechanical properties of 4A60 Al/08Al steel clad strip by cold roll bonding [J]. Heat Treat. Met., 2015, 40(7): 28
[24] (李 龙, 曾祥勇, 陈 鑫等. 热处理对冷轧4A60铝/08Al钢复合带材组织及力学性能的影响 [J]. 金属热处理, 2015, 40(7): 28)
[25] Manesh H D, Taheri A K. Bond strength and formability of an aluminum-clad steel sheet [J]. J. Alloys Compd., 2003, 361: 138
[26] Sauvage X, Dinda G P, Wilde G. Non-equilibrium intermixing and phase transformation in severely deformed Al/Ni multilayers [J]. Scr. Mater., 2007, 56: 181
[27] Chung C Y, Zhu M, Man C H. Effect of mechanical alloying on the solid state reaction processing of Ni-36.5 at.% Al alloy [J]. Intermetallics, 2002, 10: 865
[28] Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation [J]. Prog. Mater. Sci., 2000, 45: 103
[29] Sauvage X, Wetscher F, Pareige P. Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu-Fe composite [J]. Acta Mater., 2005, 53: 2127
[30] Sato K, Yoshiie T, Satoh Y, et al. Simulation of vacancy migration energy in Cu under high strain [J]. Mater. Sci. Eng., 2003, A350: 220
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
[10] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[11] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[12] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[13] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[14] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[15] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.