Please wait a minute...
金属学报  2020, Vol. 56 Issue (2): 231-239    DOI: 10.11900/0412.1961.2019.00150
  研究论文 本期目录 | 过刊浏览 |
感应加热异温轧制制备钢/铝复合板
肖宏,许朋朋,祁梓宸(),吴宗河,赵云鹏
燕山大学国家冷轧板带装备及工艺工程技术研究中心 秦皇岛 066004
Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating
XIAO Hong,XU Pengpeng,QI Zichen(),WU Zonghe,ZHAO Yunpeng
National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China
全文: PDF(10940 KB)   HTML
摘要: 

采取感应加热的方法异温轧制制备钢/铝复合板,整个过程处于一种Ar气保护氛围,研究了钢/铝复合板的结合性能和微观组织,并与冷轧工艺进行对比,分析了异温轧制工艺对结合性能的影响。结果表明:异温轧制的复合板由于钢层加热温度高于钢的动态再结晶温度,轧后碳钢组织出现等轴晶粒,发生了动态回复和再结晶,并且在钢侧近界面处产生一层平均晶粒尺寸约为5 μm的等轴细晶区,相比于冷轧复合板,大大降低了复合板的加工硬化现象。异温轧制的钢/铝复合板微观界面贴合紧密,无孔洞和间隙,跨界面的Al和Fe元素扩散宽度达到2.4 μm,复合板达到了良好的冶金结合状态,并且近界面的细晶区改善了板材性能,使得异温轧制复合板的剪切强度远高于冷轧板,在45%压下率下达到了85 MPa,是同等压下率冷轧复合板剪切强度(12 MPa)的7倍,冷轧板断裂发生在钢/铝结合面处,为脆性断裂,而异温轧制的复合板断裂发生在铝合金基体,剪切断面存在大量韧窝,呈现塑性断裂特征。

关键词 钢/铝复合板感应加热异温轧制剪切强度显微组织    
Abstract

Both cold-rolled and hot-rolled steel/aluminum laminated composites exhibited obvious strain-hardening of steel layer because the rolling temperature, limited by the melting point of aluminum (about 660 ℃), was lower than dynamic recrystallization temperature of steel (about 710 ℃). This led to poor deformation ability of composite plates and subsequent processing cracks. And the initial bonding of cold-rolled steel/aluminum composite plates usually required more than 50% highly first pass reduction, which resulted in high requirement for rolling mill capacity, especially for medium or thick size composite plates. To solve above two problems simultaneously, in this study, the steel/aluminum composite plates were prepared by differential temperature rolling (DTR) with induction heating in an argon atmosphere. The bonding properties and microstructure of the steel/aluminum laminated composites were studied, and the effect of DTR process on the bonding properties was analyzed compared with the cold rolling process. The results show that dynamic recovery and recrystallization occurred with equiaxed grains appearing in the structure of the rolled carbon steel due to the higher heating temperature of the steel layer, and an equiaxed fine grain zone with an average grain size of approximately 5 μm was formed near the interface of the steel side, which greatly reduced the hardening phenomenon of the laminated composites compared with the cold rolled clad plate. The micro-interface of DTR steel/aluminum clad plate was tightly bonded without holes and gaps. The diffusion width of Al and Fe elements across the interface reached 2.4 μm, indicating the clad plate achieved a good metallurgical bonding state, and the fine grained zone near the interface improved the properties of the sheet. The combined effect made the shear strength of the DTR clad plates much higher than that of the cold-rolled plate. At 45% reduction, the shear strength of DTR composite plate reached 85 MPa, which was 7 times of cold-rolled composite plate with the same reduction (12 MPa). The fracture of cold-rolled composite plate occurred at the steel/aluminum interface, showing brittle fracture, while the fracture of DTR clad plates occurred in the aluminum alloy matrix with a large number of dimples in the shear section, showing the characteristics of plastic fracture.

Key wordssteel/aluminum composite plate    induction heating    differential temperature rolling    shear strength    microstructure
收稿日期: 2019-05-08     
ZTFLH:  TG335.81  
基金资助:国家自然科学基金项目(51474190);河北省研究生创新项目(CXZZBS2019046)
通讯作者: 祁梓宸     E-mail: qizichen1992@stumail.ysu.edu.cn
Corresponding author: Zichen QI     E-mail: qizichen1992@stumail.ysu.edu.cn
作者简介: 肖 宏,男,1962年生,教授,博士

引用本文:

肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
Hong XIAO, Pengpeng XU, Zichen QI, Zonghe WU, Yunpeng ZHAO. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating. Acta Metall Sin, 2020, 56(2): 231-239.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00150      或      https://www.ams.org.cn/CN/Y2020/V56/I2/231

MaterialCSPMnSiFeTiCrZnCuMgAl
Q2350.050.010.0150.350.12Bal.------
6061---0.150.660.750.120.200.250.151.15Bal.
表1  普碳钢Q235和6061铝合金的化学成分 (mass fraction / %)

Material

Ultimate tensile strength

MPa

Yield strength

MPa

Shear strength

MPa

Fracture elongation

%

Q235351±5235±4197±436.5±1.5
6061215±4141±3124±324.7±0.8
表2  普碳钢Q235和6061铝合金的力学性能
图1  组坯方式示意图
图2  感应加热异温轧制工艺示意图
图3  不同感应电流和钢-铝间隙下各层板的温度变化
图4  复合板拉剪测试和界面观察
图5  不同压下率下感应加热异温轧制和冷轧钢/铝复合板的剪切强度
图6  不同工艺下钢/铝复合板结合界面的SEM像
图7  异温轧制制备的复合板钢层显微金相组织
图8  异温轧制复合板跨界面元素扩散曲线图
图9  异温轧制和冷轧工艺下元素扩散宽度
图10  45%压下率下异温轧制和冷轧复合板的拉剪断口形貌及EDS面扫描图
PositionFeAlC
195.92.91.2
295.83.40.8
30.699.00.4
40.898.70.5
52.397.50.2
60.299.70.1
表3  图10中点1~6的EDS分析 (mass fraction / %)
[1] Liu G. Applications of steel-aluminum compound track in construction of line Daxing in Beijing urban mass transit [J]. Rail. Stand. Des., 2011, (1): 119
[1] (刘 岗. 钢铝复合轨在北京市轨道交通大兴线工程中的应用 [J]. 铁道标准设计, 2011, (1): 119)
[2] Wang C, Wang L Y, Zhao H Q, et al. Application of steel-aluminum composite plate-beam structure in car body [J]. Sci. Technol. Inform., 2012, (35): 140
[2] (王 冲, 王立颖, 赵鹤群等. 钢铝复合板梁式结构在车体上的应用 [J]. 科技信息, 2012, (35): 140)
[3] Han H D, Zhang P, Du Y H, et al. Research on manufacture for steel-backed aluminum-matrix bearing material [J]. Intern. Combust. Eng. Parts, 2008, (3): 18
[3] (韩海东, 张 鹏, 杜云慧等. 钢背铝基轴瓦材料复合新工艺探索 [J]. 内燃机配件, 2008, (3): 18)
[4] Liu L X. Corrosion and protection of joint of steel-Al explosive cladding [J]. Ordn. Mater. Sci. Eng., 2003, 26(1): 36
[4] (刘玲霞. 钢-铝爆炸复合接头材料的腐蚀与防护 [J]. 兵器材料科学与工程, 2003, 26(1): 36)
[5] Shiran M K G, Khalaj G, Pouraliakbar H, et al. Effects of heat treatment on the intermetallic compounds and mechanical properties of the stainless steel 321-aluminum 1230 explosive-welding interface [J]. Int. J. Min. Met. Mater., 2017, 24: 1267
[6] Song L, Sun B Y, Cui P P. Study on steel/aluminum solid-liquid composite casting and rolling [J]. Hot Work. Technol, 2018, 47(4): 126
[6] (宋 黎, 孙斌煜, 崔鹏鹏. 钢/铝固液复合铸轧研究 [J]. 热加工工艺, 2018, 47(4): 126)
[7] Grydin O, Gerstein G, Nürnberger F, et al. Twin-roll casting of aluminum-steel clad strips [J]. J. Manuf. Process., 2013, 15: 501
[8] Movahedi M, Kokabi A H, Seyed Reihani S M. Investigation on the bond strength of Al-1100/St-12 roll bonded sheets, optimization and characterization [J]. Mater. Des., 2011, 32: 3143
[9] Manesh H D, Taheri A K. Study of mechanisms of cold roll welding of aluminium alloy to steel strip [J]. Mater. Sci. Technol., 2004, 20: 1064
[10] Manesh H D, Shahabi H S. Effective parameters on bonding strength of roll bonded Al/St/Al multilayer strips [J]. J. Alloys Compd., 2009, 476: 292
[11] Wang C Y, Jiang Y B, Xi J X, et al. Interface formation and bonding mechanism of embedded aluminum-steel composite sheet during cold roll bonding [J]. Mater. Sci. Eng., 2017, A708: 50
[12] Wang C Y, Jiang Y B, Xie J X, et al. Effect of the steel sheet surface hardening state on interfacial bonding strength of embedded aluminum-steel composite sheet produced by cold roll bonding process [J]. Mater. Sci. Eng., 2016, A652: 51
[13] Wu B, Li L, Xia C D, et al. Effect of surface nitriding treatment in a steel plate on the interfacial bonding strength of the aluminum/steel clad sheets by the cold roll bonding process [J]. Mater. Sci. Eng., 2017, A682: 270
[14] Gao C, Li L, Chen X, et al. The effect of surface preparation on the bond strength of Al-St strips in CRB process [J]. Mater. Des., 2016, 107: 205
[15] Wang C Y, Liu X H, Jiang Y B, et al. Effects of annealing and cold roll-bonded interface on the microstructure and mechanical properties of the embedded aluminum-steel composite sheet [J]. Sci. Bull., 2018, 63: 1448
[16] Chen X, Li L, Zhou D J. Review on the formation and inhibition mechanism of Fe-Al intermetallic compound [J]. Mater. Rev., 2016, 30(13): 125
[16] (陈 鑫, 李 龙, 周德敬. 铝钢金属间化合物生长及其抑制机理的研究现状 [J]. 材料导报, 2016, 30(13): 125)
[17] Tang C L, Xu Q P, Weng H, et al. Influence of the surface treatment process on bonding properties of Al/steel(4A60/08AL) clad sheets by cold roll bonding [J]. Light Alloy Fabric. Technol., 2016, 44(6): 25
[17] (唐超兰, 许秋平, 翁 浩等. 表面处理工艺对冷轧铝/钢(4A60/08AL)复合板结合性能的影响 [J]. 轻合金加工技术, 2016, 44(6): 25)
[18] Li M Q, Jiang F L, Zhang H, et al. Deformation rule of steel/aluminum metal-laminate material during hot roll bonding [J]. Chin. J. Nonferrous Met., 2009, 19: 644
[18] (李民权, 蒋福林, 张 辉等. 钢/铝复合板热轧复合变形规律 [J]. 中国有色金属学报, 2009, 19: 644)
[19] Nezhad M S A, Ardakani A H. A study of joint quality of aluminum and low carbon steel strips by warm rolling [J]. Mater. Des., 2009, 30: 1103
[20] Yu J M, Yu Z S, Qi K M, et al. Bonding mechanism of steel-Al clad plate by rolling at different temperature [J]. Iron Steel, 1995, 30(8): 44
[20] (于九明, 于长生, 齐克敏等. 钢和铝异温轧制复合机理的研究 [J]. 钢铁, 1995, 30(8): 44)
[21] Xiao H, Qi Z C, Yu C, et al. Preparation and properties for Ti/Al clad plates generated by differential temperature rolling [J]. J. Mater. Process. Technol., 2017, 249: 285
[22] Qi Z C, Yu C, Xiao H. Microstructure and bonding properties of magnesium alloy AZ31/CP-Ti clad plates fabricated by rolling bonding [J]. J. Manuf. Processes., 2018, 32: 175
[23] Jiao H, Zhang M, Yan Z J. Study on binding property of steel/aluminum laminated sheets fabricated by two-pass hot rolling [J]. New Technol. New Processes, 2015, (8): 95
[23] (焦 宏, 张 敏, 闫中建. 两道次热轧法制备钢/铝复合板的结合性能研究 [J]. 新技术新工艺, 2015, (8): 95)
[24] Li L, Zeng X Y, Chen X, et al. Influence of heat treatment on microstructure and mechanical properties of 4A60 Al/08Al steel clad strip by cold roll bonding [J]. Heat Treat. Met., 2015, 40(7): 28
[24] (李 龙, 曾祥勇, 陈 鑫等. 热处理对冷轧4A60铝/08Al钢复合带材组织及力学性能的影响 [J]. 金属热处理, 2015, 40(7): 28)
[25] Manesh H D, Taheri A K. Bond strength and formability of an aluminum-clad steel sheet [J]. J. Alloys Compd., 2003, 361: 138
[26] Sauvage X, Dinda G P, Wilde G. Non-equilibrium intermixing and phase transformation in severely deformed Al/Ni multilayers [J]. Scr. Mater., 2007, 56: 181
[27] Chung C Y, Zhu M, Man C H. Effect of mechanical alloying on the solid state reaction processing of Ni-36.5 at.% Al alloy [J]. Intermetallics, 2002, 10: 865
[28] Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation [J]. Prog. Mater. Sci., 2000, 45: 103
[29] Sauvage X, Wetscher F, Pareige P. Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu-Fe composite [J]. Acta Mater., 2005, 53: 2127
[30] Sato K, Yoshiie T, Satoh Y, et al. Simulation of vacancy migration energy in Cu under high strain [J]. Mater. Sci. Eng., 2003, A350: 220
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[3] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[4] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[5] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[6] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[7] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[8] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[9] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[10] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[11] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[12] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[13] 何明, 李显亮, 王情伟, 王连钰, 王强. 磁屏蔽对电磁出钢系统中感应加热电源功率损耗的影响[J]. 金属学报, 2019, 55(2): 249-257.
[14] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[15] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.