|
|
Ti6Al4V表面微纳结构的制备及生物活性 |
高晗1,2( ), 刘力1,2, 周笑宇1,2, 周心怡1,2, 蔡汶君1,2, 周泓伶1,2 |
1.山东大学 材料液固结构演变与加工教育部重点实验室 济南 250061 2.山东大学 材料科学与工程学院 济南 250061 |
|
Preparation and Bioactivity of Micro-Nano Structure on Ti6Al4V Surface |
GAO Han1,2( ), LIU Li1,2, ZHOU Xiaoyu1,2, ZHOU Xinyi1,2, CAI Wenjun1,2, ZHOU Hongling1,2 |
1.Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China 2.School of Materials Science and Engineering, Shandong University, Jinan 250061, China |
引用本文:
高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
Han GAO,
Li LIU,
Xiaoyu ZHOU,
Xinyi ZHOU,
Wenjun CAI,
Hongling ZHOU.
Preparation and Bioactivity of Micro-Nano Structure on Ti6Al4V Surface[J]. Acta Metall Sin, 2023, 59(11): 1466-1474.
1 |
Dong H Q, Guo Z M, Mao X M, et al. Prospect of development trend of melting technology of titanium and/or its alloys with high efficiency and low energy consumption [J]. Mater. Rev., 2008, 22(5):68
|
1 |
董和泉, 国子明, 毛协民 等. 低能耗节约型钛及钛合金熔炼技术的发展趋势 [J]. 材料导报, 2008, 22(5): 68
|
2 |
Lin C W, Ju C P, Lin J H C. A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys [J]. Biomaterials, 2005, 26: 2899
doi: 10.1016/j.biomaterials.2004.09.007
|
3 |
Zhao L C, Cui C X, Huang N. Design and performance study on two new low elastic modulus metastable β titanium alloys for biomedical application [J]. Tianjin Metall., 2009, (2): 13
|
3 |
赵立臣, 崔春翔, 黄 楠. 两种新型生物医用低弹性模量亚稳β钛合金的设计与性能研究 [J]. 天津冶金, 2009, (2): 13
|
4 |
Rao S, Ushida T, Tateishi T, et al. Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells [J]. Bio-Med. Mater. Eng., 1996, 6: 79
|
5 |
Walker P R, LeBlanc J, Sikorska M. Effects of aluminum and other cations on the structure of brain and liver chromatin [J]. Biochemistry, 1989, 28: 3911
pmid: 2752000
|
6 |
Sumitomo N, Noritake K, Hattori T, et al. Experiment study on fracture fixation with low rigidity titanium alloy: Plate fixation of tibia fracture model in rabbit [J]. J. Mater. Sci.: Mater. Med., 2008, 19: 1581
doi: 10.1007/s10856-008-3372-y
|
7 |
Ferraris S, Spriano S. Antibacterial titanium surfaces for medical implants [J]. Mater. Sci. Eng., 2016, C61: 965
|
8 |
Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review [J]. Prog. Mater. Sci., 2009, 54: 397
doi: 10.1016/j.pmatsci.2008.06.004
|
9 |
Ning C Q, Zhou Y. Development and research status of biomedical titanium alloys [J]. Mater. Sci. Technol., 2002, 10: 100
|
9 |
宁聪琴, 周 玉. 医用钛合金的发展及研究现状 [J]. 材料科学与工艺, 2002, 10: 100
|
10 |
Málek J, Hnilica F, Veselý J, et al. Microstructure and mechanical properties of Ti-35Nb-6Ta alloy after thermomechanical treatment [J]. Mater. Charact., 2012, 66: 75
doi: 10.1016/j.matchar.2012.02.012
|
11 |
Ren B, Wan Y, Wang G S, et al. Effects of surface morphology and composition of medical titanium alloys on biocompatibility [J]. Surf. Technol., 2018, 47(4): 160
|
11 |
任 冰, 万 熠, 王桂森 等. 医用钛合金表面形貌与成分对生物相容性影响研究综述 [J]. 表面技术, 2018, 47(4): 160
|
12 |
Zhao X F, Niinomi M, Nakai M, et al. Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications [J]. Acta Biomater., 2012, 8: 1990
doi: 10.1016/j.actbio.2012.02.004
pmid: 22326686
|
13 |
Elahinia M H, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: A review [J]. Prog. Mater. Sci., 2012, 57: 911
doi: 10.1016/j.pmatsci.2011.11.001
|
14 |
Mendonça G, Mendonça D B S, Aragão F J L, et al. Advancing dental implant surface technology—From micron- to nanotopography [J]. Biomaterials, 2008, 29: 3822
doi: 10.1016/j.biomaterials.2008.05.012
pmid: 18617258
|
15 |
Jiao Y. Surface treatment and microstructure of biomedical titanium alloy [D]. Dalian: Dalian University of Technology, 2013
|
15 |
焦 岩. 生物医用钛合金表面处理及其微结构 [D]. 大连: 大连理工大学, 2013
|
16 |
Liu X Y, Chu P K, Ding C X. Surface modification of titanium, titanium alloys, and related materials for biomedical applications [J]. Mater. Sci. Eng., 2004, R47: 49
|
17 |
Hung K Y, Lin Y C, Feng H P. The effects of acid etching on the nanomorphological surface characteristics and activation energy of titanium medical materials [J]. Materials, 2017, 10: 1164
doi: 10.3390/ma10101164
|
18 |
Petersen A G, Klenerman D, Hedges W M, et al. Effect of cavitation on carbon dioxide corrosion and the development of a test for evaluating inhibitors [J]. Corrosion, 2002, 58: 216
doi: 10.5006/1.3279872
|
19 |
Hori N, Iwasa F, Ueno T, et al. Selective cell affinity of biomimetic micro-nano-hybrid structured TiO2 overcomes the biological dilemma of osteoblasts [J]. Dent. Mater., 2010, 26: 275
doi: 10.1016/j.dental.2009.11.077
|
20 |
Gittens R A, McLachlan T, Olivares-Navarrete R, et al. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation [J]. Biomaterials, 2011, 32: 3395
doi: 10.1016/j.biomaterials.2011.01.029
pmid: 21310480
|
21 |
Li N B. Biological behaviors of micro/nano-scale bioactive oxide coatings prepared by induction heating on medical titanium and its alloys [D]. Jinan: Shandong University, 2018
|
21 |
李宁波. 医用钛及钛合金表面微-纳尺度生物活性氧化膜的感应加热制备及其生物学行为 [D]. 济南: 山东大学, 2018
|
22 |
Verheul M, Drijfhout J W, Pijls B G, et al. Non-contact induction heating and SAAP-148 eliminate persisters within MRSA biofilms mimicking a metal implant infection [J]. Eur. Cell. Mater., 2021, 42: 34
doi: 10.22203/eCM
|
23 |
Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? [J]. Biomaterials, 2006, 27: 2907
doi: 10.1016/j.biomaterials.2006.01.017
pmid: 16448693
|
24 |
Wang H Y, Zhu R F, Lu Y P, et al. Structures and properties of layered bioceramic coatings on pure titanium using a hybrid technique of sandblasting and micro-arc oxidation [J]. Appl. Surf. Sci., 2013, 282: 271
doi: 10.1016/j.apsusc.2013.05.119
|
25 |
Jung S C, Lee K, Kim B H. Biocompatibility of plasma polymerized sandblasted large grit and acid titanium surface [J]. Thin Solid Films, 2012, 521: 150
doi: 10.1016/j.tsf.2011.12.089
|
26 |
Saldaña L, Barranco V, González-Carrasco J L, et al. Thermal oxidation enhances early interactions between human osteoblasts and alumina blasted Ti6Al4V alloy [J]. J. Biomed. Mater. Res., 2007, 81A: 334
doi: 10.1002/jbm.a.v81a:2
|
27 |
Gobbato L, Arguello E, Martin I S, et al. Early bone healing around 2 different experimental, HA grit-blasted, and dual acid-etched titanium implant surfaces. A pilot study in rabbits [J]. Implant Dent., 2012, 21: 454
doi: 10.1097/ID.0b013e3182611cd7
pmid: 23149502
|
28 |
Szmukler-Moncler S, Perrin D, Ahossi V, et al. Biological properties of acid etched titanium implants: Effect of sandblasting on bone anchorage [J]. J. Biomed. Mater. Res., 2004, 68B: 149
doi: 10.1002/(ISSN)1097-4636
|
29 |
Vanzillotta P S, Sader M S, Bastos I N, et al. Improvement of in vitro titanium bioactivity by three different surface treatments [J]. Dent. Mater., 2006, 22: 275
pmid: 16054681
|
30 |
Le Guéhennec L, Soueidan A, Layrolle P, et al. Surface treatments of titanium dental implants for rapid osseointegration [J]. Dent. Mater., 2007, 23: 844
doi: 10.1016/j.dental.2006.06.025
pmid: 16904738
|
31 |
Aparicio C, Padrós A, Gil F J. In vivo evaluation of micro-rough and bioactive titanium dental implants using histometry and pull-out tests [J]. J. Mech. Behav. Biomed. Mater., 2011, 4: 1672
doi: 10.1016/j.jmbbm.2011.05.005
pmid: 22098868
|
32 |
Chauhan P, Koul V, Bhatnagar N. Effect of acid etching temperature on surface physiochemical properties and cytocompatibility of Ti6Al4V ELI alloy [J]. Mater. Res. Express, 2019, 6: 105412
doi: 10.1088/2053-1591/ab3ac5
|
33 |
Park J Y, Davies J E. Red blood cell and platelet interactions with titanium implant surfaces [J]. Clin. Oral Implants Res., 2000, 11: 530
doi: 10.1034/j.1600-0501.2000.011006530.x
|
34 |
Ren B, Wan Y, Wang G S, et al. Influence of different acid-etching time on the surface morphology and corrosion resistance of TC4 titanium alloys after sandblasting [J]. J. Shandong Univ. (Eng. Sci.), 2017, 47(3): 139
|
34 |
任 冰, 万 熠, 王桂森 等. 酸蚀时间对喷砂后TC4钛合金表面形貌及抗腐蚀性的影响 [J]. 山东大学学报(工学版), 2017, 47(3):139
|
35 |
Ge Y M. Preparation and properties of nano-porous film on pure medical titanium [D]. Guangzhou: South China University of Technology, 2011
|
35 |
葛永梅. 医用纯钛表面纳米膜层的制备及其生物性能研究 [D]. 广州: 华南理工大学, 2011
|
36 |
Lu Y G, Song H L. Effect of ultrasonic on corrosion of zinc in hydrochloric acid [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2011, 39(8): 77
|
36 |
卢义刚, 宋恒玲. 超声波对盐酸腐蚀锌的影响 [J]. 华南理工大学学报(自然科学版), 2011, 39(8): 77
|
37 |
Ooi S K, Biggs S. Ultrasonic initiation of polystyrene latex synthesis [J]. Ultrason. Sonochem., 2000, 7: 125
pmid: 10909731
|
38 |
Suslick K S, Hammerton D A, Cline R E. Sonochemical hot spot [J]. J. Am. Chem. Soc., 1986, 108: 5641
doi: 10.1021/ja00278a055
|
39 |
Rohanizadeh R, Al-Sadeq M, LeGeros R Z. Preparation of different forms of titanium oxide on titanium surface: Effects on apatite deposition [J]. J. Biomed. Mater. Res., 2004, 71A: 343
doi: 10.1002/(ISSN)1097-4636
|
40 |
Paital S R, Dahotre N B. Wettability and kinetics of hydroxyapatite precipitation on a laser-textured Ca-P bioceramic coating [J]. Acta Biomater., 2009, 5: 2763
doi: 10.1016/j.actbio.2009.03.004
pmid: 19362524
|
41 |
Li N B, Zhao X C, Geng S N, et al. Microstructures of Ti6Al4V matrices induce structural evolution of bioactive surface oxide layers via cold compression and induction heating [J]. Appl. Surf. Sci., 2021, 552: 149504
doi: 10.1016/j.apsusc.2021.149504
|
42 |
Wang W M, Lin S H, Li L, et al. Composition, microstructure and mechanical properties of Ti6Al4V (ELI) alloy bars for surgical implants [A]. The 14th National Titanium and Proceedings of the Titanium Alloy Academic Exchange Conference (Volume 1) [C]. Shanghai: Shanghai Scientific and Technological Literature Press, 2010: 555
|
42 |
王卫民, 林劭华, 李 雷 等. 外科植入物用Ti6Al4V(ELI)合金棒材的成分、组织和力学性能 [A]. 第十四届全国钛及钛合金学术交流会论文集 (上册) [C]. 上海: 上海科学技术文献出版社, 2010: 555
|
43 |
Singhvi R, Stephanopoulos G, Wang D I C. Effects of substratum morphology on cell physiology [J]. Biotechnol. Bioeng., 1994, 43: 764
pmid: 18615800
|
44 |
Kim H K, Jang J W, Lee C H. Surface modification of implant materials and its effect on attachment and proliferation of bone cells [J]. J. Mater. Sci.: Mater. Med., 2004, 15: 825
doi: 10.1023/B:JMSM.0000032824.62866.a1
|
45 |
Rønold H J, Ellingsen J E. Effect of micro-roughness produced by TiO2 blasting—Tensile testing of bone attachment by using coin-shaped implants [J]. Biomaterials, 2002, 23: 4211
pmid: 12194524
|
46 |
Ponsonnet L, Reybier K, Jaffrezic N, et al. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour [J]. Mater. Sci. Eng., 2003, C23: 551
|
47 |
Zhao X. Mechanism investigation on osteoblast adhesion affected by Ti6Al4V biological materials surface roughness [D]. Harbin: Harbin Institute of Technology, 2010
|
47 |
赵 昕. Ti6Al4V生物材料表面粗糙度对成骨细胞黏附的影响机制研究 [D]. 哈尔滨: 哈尔滨工业大学, 2010
|
48 |
Jiang H Y, Zhang Y X, Liang A G, et al. Influencing factors and prediction model of material surface wettability [J]. Surf. Technol., 2018, 47(1): 60
|
48 |
蒋华义, 张亦翔, 梁爱国 等. 材料表面润湿性的影响因素及预测模型 [J]. 表面技术, 2018, 47(1): 60
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|