Please wait a minute...
金属学报  2022, Vol. 58 Issue (8): 1072-1082    DOI: 10.11900/0412.1961.2021.00492
  研究论文 本期目录 | 过刊浏览 |
Pb-Al合金定向凝固组织形成过程
李彦强1,2, 赵九洲1,2(), 江鸿翔1,2, 何杰1,2
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.中国科学技术大学 材料科学与工程学院 沈阳 110016
Microstructure Formation in Directionally Solidified Pb-Al Alloy
LI Yanqiang1,2, ZHAO Jiuzhou1,2(), JIANG Hongxiang1,2, HE Jie1,2
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
Yanqiang LI, Jiuzhou ZHAO, Hongxiang JIANG, Jie HE. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. Acta Metall Sin, 2022, 58(8): 1072-1082.

全文: PDF(2011 KB)   HTML
摘要: 

实验考察了Pb-Al液-固分相合金的定向凝固行为,建立了Pb-Al合金定向凝固模型,结合实验模拟分析了凝固组织形成过程。研究表明,在Pb-Al合金液-固分相过程中,凝固界面前沿存在一过冷区,富Al (弥散相)粒子在此区间内形核,并在向凝固界面移动过程中进行扩散长大,随着凝固速率的提高,弥散相粒子形核率升高、数量密度增大、平均半径减小。富Al粒子Stokes运动的方向与合金凝固方向相同,导致粒子在凝固界面前富集;熔体的对流运动导致弥散相粒子的形核率及数量密度沿试样径向不均匀分布。在弥散相粒子Stokes运动和熔体对流作用下,形成弥散型凝固组织的必要条件为合金的凝固速率足够高,能保证凝固界面前沿液-固分相区间内所有尺寸粒子均向凝固界面迁移。

关键词 液-固分相Pb-Al合金定向凝固显微组织模拟    
Abstract

Pb is widely used as grid material for lead-acid batteries, an electrowinning electrode and a nuclear radiation shield. To improve the performance of these materials, alloying elements such as Ag, Sb, and Ca are commonly added. Pb's conductivity and strength can be improved using Al as an alloying element. However, the phase diagram of the Pb-Al alloy is characterized by the large liquid-liquid and liquid-solid miscibility gaps. When a homogeneous single-phase Pb-Al liquid is cooled into the miscibility gaps, Al-rich droplets/particles precipitate first from the melt, causing the Pb-Al alloy to form a microstructure with coarse Al-rich particles or serious phase segregation. Understanding the evolution of microstructure in the liquid-solid phase separation has remained a scientific challenge thus far. The solidification of the Pb-Al alloy is investigated using directional solidification experiments in this work. A numerical model is developed to describe the microstructure formation in a directionally solidified liquid-solid phase separation alloy using the population dynamics method. The evolution of the microstructure is simulated. The simulation results agree well with the experimental results. They show that a supercooling zone appears in front of the solidification interface, where the liquid-solid phase separation of the Pb-Al alloy occurs. In this zone, Al-rich particles (dispersed phase) form and grow by solute diffusing as they move toward the solidification interface. The nucleation rate and the number density of Al-rich particles increase as the solidification rate increases, whereas the average radius of the particles decreases. The Al-rich particles' Stokes movement velocity has the same direction as the melt's solidification velocity, resulting in an enrichment of Al-rich particles in front of the solidification interface. Because of the convective flow of the melt in front of the solidification interface, the cooling rate of the melt is unevenly distributed along the radial direction, resulting in an uneven distribution of nucleation rate, number density, and average radius of Al-rich particles. The formation of a solidification microstructure with the dispersive distribution of Al-rich particles is dependent on the solidification rate being fast enough to ensure that all size particles in the liquid-solid phase separation region move toward the solidification interface under the effect of the Stokes movement of Al-rich particles and the convective flow of melt.

Key wordsliquid-solid phase separation    Pb-Al alloy    directional solidification    microstructure    simulation
收稿日期: 2021-11-15     
ZTFLH:  TG111.4  
基金资助:国家自然科学基金项目(51971227);国家自然科学基金项目(51771210);中国载人航天工程项目
作者简介: 李彦强,男,1994年生,博士生
图1  Pb-Al合金局部相图及定向凝固条件下Pb-Al合金液-固分相过程示意图
图2  不同凝固速率条件下试样凝固界面前沿中心轴线处的温度分布曲线
图3  以不同凝固速率定向凝固时Pb-0.15Al合金的微观组织
图4  不同凝固速率下Pb-0.15Al合金中富Al粒子的二维半径分布
图5  Pb-0.15Al合金中富Al粒子的二维平均半径(<R>2D)随凝固速率的变化
ParameterValueUnit
Dynamic viscosity of Pb, ηm0.0004636 × exp(1036.7 / T)Pa·s
Thermal conductivity of liquid Pb, km15.88W·m-1·K-1
Thermal conductivity of Al2O3 crucible, kcru10W·m-1·K-1
Density of liquid Pb, ρm10678kg·m-3
Density of solid Al, ρβ2700kg·m-3
Specific heat of liquid Pb, cpm127.61J·kg-1·K-1
Latent heat of solidification of Pb, L24700J·kg-1
表1  Pb-Al体系的热物性参数[24]
图6  凝固速率为4 mm/s时熔体温度(T)、平衡组元互溶温度(Ts)及粒子形核率(I)沿中心轴线的变化
图7  凝固速率为4 mm/s时富Al粒子形核率、数量密度(N)、平均半径(<R>)、体积分数(ϕ)及熔体过饱和度(s)沿试样中心轴线的变化
图8  不同凝固速率下熔体温度、组元互溶温度及粒子形核率沿z轴的变化,以及凝固界面形状
图9  不同凝固速率下富Al粒子形核率、数量密度及平均半径沿z轴的变化
图10  凝固速率为4 mm/s时凝固界面前沿中心轴线处平均尺寸富Al粒子的Stokes运动速率(uS(<R>, z))沿z轴的变化
图11  凝固速率为4 mm/s时凝固界面前沿中心轴线处富Al粒子数量密度与体积分数沿z轴的变化
图12  凝固速率为4 mm/s时凝固界面前沿合金熔体内的温度场和流场,以及熔体对流速度的r、z分量(Vcr 、Vcz )沿轴向位置z的变化
图13  凝固速率为4 mm/s时富Al粒子峰值形核率(Imax)及对应位置处熔体对流速度的z分量(Vcz, Imax)沿试样径向的变化
图14  凝固界面前沿合金熔体内富Al粒子数量密度及体积分数沿试样径向分布
图15  Pb-0.15Al合金定向凝固条件下粒子Stokes运动速度z分量的最大值(uSzmax)、熔体对流速度z分量的最大值(Vczmax)及合速度z分量的最大值(uSzmax + Vczmax + V0z)随凝固速率的变化Color online
1 Yi T F, Dai C S, Hu X G, et al. Research progress in lead foam grid materials for lead acid batteries [J]. Batte. Bimonth., 2006, 36: 229
1 伊廷锋, 戴长松, 胡信国 等. 铅酸电池泡沫铅板栅材料的研究进展 [J]. 电池, 2006, 36: 229
2 Xu L, Yan M, Wang X Y, et al. The influences of silver and zinc addition on the electrochemical performances of the Pb-Ca-Sn grids for lead acid batteries [J]. Metall. Res. Technol., 2018, 115: 6
3 Wu Z F, Hu C, Mu J Y, et al. Investigation of Pb-Sr and Pb-Ca binary alloys as grids for lead-acid batteries [J]. Int. J. Electrochem. Sci., 2019, 14: 8709
4 Wang X K, Chen S, Chen B M, et al. Study status of energy saving anodes and electrolyte ions for copper electrowinning [J]. Mater. Prot., 2020, 53(8): 117
4 王秀凯, 陈 胜, 陈步明 等. 铜电积用节能阳极及电解液离子影响的研究现状 [J]. 材料保护, 2020, 53(8): 117
5 Zhuang S W, Wu B, Duan N, et al. Research progress in anodes for zinc electrowinning [J]. Acta Mater. Compos. Sin., 2021, 38: 1313
5 庄思伟, 吴 冰, 段 宁 等. 锌电沉积阳极的研究进展 [J]. 复合材料学报, 2021, 38: 1313
6 Xiong Y L, Wang Y F, Roselle G, et al. Lead/lead-alloy as a corrosion-resistant outer layer packaging material for high level nuclear waste disposal [J]. Nucl. Eng. Des., 2021, 380: 111294
doi: 10.1016/j.nucengdes.2021.111294
7 Ahmed T, Jiang H X, Li W, et al. Solidification of Pb-Al alloys under the influence of electric current pulses [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 842
doi: 10.1007/s40195-017-0685-1
8 Li S R. Lead and Lead Alloy [M]. Changsha: Central South University Press, 1996: 262
8 李松瑞. 铅及铅合金 [M]. 长沙: 中南大学出版社, 1996: 262
9 Cole J F, Goodwin F E. The development and potential applications of a Pb-Al alloy [J]. JOM, 1990, 42: 41
doi: 10.1007/BF03221021
10 Cao Y D. Preparation and performance of a novel lead-based alloy anode for zinc electrowinning [D]. Kunming: Kunming University of Science and Technology, 2009
10 曹远栋. 锌电积用新型铅基合金阳极的制备及性能研究 [D]. 昆明: 昆明理工大学, 2009
11 Li W, Sun Q, Jiang H X, et al. Solidification of Al-Bi alloy and influence of microalloying element Sn [J]. Acta Metall. Sin., 2019, 55: 831
11 黎 旺, 孙 倩, 江鸿翔 等. Al-Bi合金凝固过程及微合金化元素Sn的影响 [J]. 金属学报, 2019, 55: 831
12 Zhao J Z, Ahmed T, Jiang H X, et al. Solidification of immiscible alloys: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 1
doi: 10.1007/s40195-016-0523-x
13 Deng C K, Jiang H X, Zhao J Z, et al. Study on the solidification of Ag-Ni monotectic alloy [J]. Acta Metall. Sin., 2020, 56: 212
13 邓聪坤, 江鸿翔, 赵九洲 等. Ag-Ni偏晶合金凝固过程研究 [J]. 金属学报, 2020, 56: 212
doi: 10.11900/0412.1961.2019.00192
14 Gránásy L, Ratke L. Homogeneous nucleation within the liquid miscibility gap of Zn-Pb alloys [J]. Scr. Metall. Mater., 1993, 28: 1329
doi: 10.1016/0956-716X(93)90477-A
15 Ratke L, Diefenbach S. Liquid immiscible alloys [J]. Mater. Sci. Eng., 1995, R15: 263
16 Li H L. Study of the mechanism of the microstructure evolution in directionally solidified monotectic alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2009
16 李海丽. 偏晶合金定向凝固过程中组织演变机理研究 [D]. 沈阳: 中国科学院金属研究所, 2009
17 Zhao J, Ratke L. Repeated nucleation of minority phase droplets induced by drop motion [J]. Scr. Mater., 1998, 39: 181
doi: 10.1016/S1359-6462(98)00141-9
18 Jiang H X, Zhao J Z. Effect mechanism of a direct current on the solidification of immiscible alloys [J]. Chin. Phys. Lett., 2012, 29: 088104
19 Zhao J Z, Ratke L, Jia J, et al. Modeling and simulation of the microstructure evolution during a cooling of immiscible alloys in the miscibility gap [J]. J. Mater. Sci. Technol., 2002, 18: 197
20 Shangguan D, Ahuja S, Stefanescu D M. An analytical model for the interaction between an insoluble particle and an advancing solid/liquid interface [J]. Metall. Trans., 1992, 23A: 669
21 Li H L, Zhao J Z. Convective effect on the microstructure evolution during a liquid-liquid decomposition [J]. Appl. Phys. Lett., 2008, 92: 241902
doi: 10.1063/1.2945634
22 Einstein A. A new determination of molecular dimensions [J]. Ann. Phys., 1906, 324: 289
doi: 10.1002/andp.19063240204
23 Yu S K, Sommer F, Predel B. Isopiestic measurements and assessment of the Al-Pb System [J]. Z. Metallkd., 1996, 87: 574
24 Takamichi I, Roderick I L G, translated by Xian A P, Wang L W. The Physical Properties of Liquid Metals [M]. Beijing: Science Press, 2006: 256
24 Takamichi I, Roderick I L G著, 冼爱平, 王连文译. 液态金属的物理性能 [M]. 北京: 科学出版社, 2006: 256
25 Li H L, Zhao J Z, Zhang Q X, et al. Microstructure formation in a directionally solidified immiscible alloy [J]. Metall. Mater. Trans., 2008, 39A: 3308
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[5] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[6] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[7] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[8] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[9] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[13] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[14] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[15] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.