|
|
石墨烯纳米片增强镁基复合材料力学性能及增强机制 |
周霞1,2( ),刘霄霞2 |
1. 大连理工大学工业装备结构分析国家重点实验室 大连 116024 2. 大连理工大学工程力学系 大连 116024 |
|
Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites |
ZHOU Xia1,2( ),LIU Xiaoxia2 |
1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China 2. Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China |
引用本文:
周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
Xia ZHOU,
Xiaoxia LIU.
Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. Acta Metall Sin, 2020, 56(2): 240-248.
[1] | Lu L, Lai M O, Froyen L. Structure and properties of Mg metal-metal composite [J]. Key Eng. Mater., 2002, 230-232: 287 | [2] | Dieringa H. Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: A review [J]. J. Mater. Sci., 2011, 46: 289 | [3] | Zhou X, Su D P, Wu C W, et al. Tensile mechanical properties and strengthening mechanism of hybrid carbon nanotube and silicon carbide nanoparticle-reinforced magnesium alloy composites [J]. J. Nanomater., 2012, 2012: 851862 | [4] | Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306: 666 | [5] | Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single layer graphene [J]. Nano Lett., 2008, 8: 902 | [6] | Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321: 385 | [7] | Lee C, Wei X D, Li Q Y, et al. Elastic and frictional properties of graphene [J]. Phys. Status Solidi, 2009, 246B: 2562 | [8] | Rafiee M A, Rafiee J, Wang Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content [J]. ACS Nano, 2009, 3: 3884 | [9] | Du X M, Zhen K F, Liu F G. Graphene reinforced magnesium matrix composites by hot pressed sintering [J]. Dig. J. Nanomater. Bios., 2018, 13: 827 | [10] | Yuan Q H, Zhou G H, Liao L, et al. Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets [J]. Carbon, 2018, 127: 177 | [11] | Xiang S L, Gupta M, Wang X J, et al. Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets [J]. Composites, 2017, 100A: 183 | [12] | Rong Y, He H P, Zhang L, et al. Molecular dynamics studies on the strengthening mechanism of Al matrix composites reinforced by grapnene nanoplatelets [J]. Comp. Mater. Sci., 2018, 153: 48 | [13] | Rezaei R. Tensile mechanical characteristics and deformation mechanism of metal-graphene nanolayered composites [J]. Comp. Mater. Sci., 2018, 151: 181 | [14] | Barfmal M, Montazeri A. MD-based design of SiC/graphene nanocomposites towards better mechanical performance [J]. Ceram. Int., 2017, 43: 17167 | [15] | Zhou X, Liu X X, Sansoz F, et al. Molecular dynamics simulation on temperature and stain rate-dependent tensile response and failure behavior of Ni-coated CNT/Mg composites [J]. Appl. Phys., 2018, 124A: 506 | [16] | Zhou X, Song S Y, Li L, et al. Molecular dynamics simulation for mechanical properties of magnesium matrix composites reinforced with nickel-coated single-walled carbon nanotubes [J]. J. Compos. Mater., 2016, 50: 191 | [17] | LAMMPS simulation software program. LAMMPS Users Manual. 2003. 11 May 2018 version. URL: | [18] | Li C Y, Browning A R, Christensen S, et al. Atomistic simulations on multilayer graphene reinforced epoxy composites [J]. Composites, 2012, 43A: 1293 | [19] | Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool [J]. Model. Simul. Mater. Sci. Eng., 2010, 18: 015012 | [20] | Chen W, Fish J. A mathematical homogenization perspective of virial stress [J]. Int. J. Numer. Meth. Eng., 2006, 67: 189 | [21] | Sun D Y, Mendelev M I, Becker C A, et al. Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg [J]. Phys. Rev., 2006, 73B: 024116 | [22] | Stuart S J, Tutein A B, Harrison J A. A reactive potential for hydrocarbons with intermolecular interactions [J]. J. Chem. Phys., 2000, 112: 6472 | [23] | Sammalkorpi M, Krasheninnikov A, Kuronen A, et al. Mechanical properties of carbon nanotubes with vacancies and related defects [J]. Phys. Rev., 2004, 70B: 245416 | [24] | Shibuta Y, Maruyama S. Bond-order potential for transition metal carbide cluster for the growth simulation of a single-walled carbon nanotube [J]. Comp. Mater. Sci., 2007, 39: 842 | [25] | He L C, Guo S S, Lei J C, et al. The effect of stone-thrower-wales defects on mechanical properties of graphene sheets—A molecular dynamics study [J]. Carbon, 2014, 75: 124 | [26] | Liang J H, Li H J, Qi L H, et al. Influence of Ni-CNTs additions on the microstructure and mechanical properties of extruded Mg-9Al alloy [J]. Mater. Sci. Eng., 2016, A678: 101 | [27] | Juneja A, Rajasekaran G. Effect of temperature and strain-rate on mechanical properties of defected graphene sheet: A molecular dynamics study [J]. IOP Conf. Ser. Mater. Sci. Eng., 2018, 402: 012020 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|