Please wait a minute...
金属学报  2014, Vol. 50 Issue (1): 49-56    DOI: 10.3724/SP.J.1037.2013.00417
  论文 本期目录 | 过刊浏览 |
2024铝合金在中国西部盐湖大气环境中的局部腐蚀行为*
王彬彬, 王振尧(), 曹公望, 刘艳洁, 柯伟
中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
LOCALIZED CORROSION OF ALUMINUM ALLOY 2024 EXPOSED TO SALT LAKE ATMOSPHERIC ENVIRONMENT IN WESTERN CHINA
WANG Binbin, WANG Zhenyao(), CAO Gongwang, LIU Yanjie, KE Wei
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

王彬彬, 王振尧, 曹公望, 刘艳洁, 柯伟. 2024铝合金在中国西部盐湖大气环境中的局部腐蚀行为*[J]. 金属学报, 2014, 50(1): 49-56.
Binbin WANG, Zhenyao WANG, Gongwang CAO, Yanjie LIU, Wei KE. LOCALIZED CORROSION OF ALUMINUM ALLOY 2024 EXPOSED TO SALT LAKE ATMOSPHERIC ENVIRONMENT IN WESTERN CHINA[J]. Acta Metall Sin, 2014, 50(1): 49-56.

全文: PDF(10179 KB)   HTML
摘要: 

通过4 a的现场大气暴露实验, 利用SEM/EDS, OM, XRD技术和电化学测试技术, 研究了包/不包铝的2024铝合金在中国西部盐湖大气环境中的局部腐蚀行为. 结果表明, 包/不包铝的2024铝合金在盐湖大气环境中发生了严重的点蚀, 暴露2 a后, 包铝层已被腐蚀穿透; 不包铝的2024铝合金最大点蚀深度已达约320 μm, 个别位置发生穿孔. 包/不包铝的2024铝合金的主要腐蚀产物都是层状双金属氢氧化物—[Mg1-xAlx(OH)2]x+ (Cl-, CO2-)x·mH2O. 电化学测试分析结果表明, 随Cl-浓度的升高, 2024铝合金的开路电位不断降低, 耐蚀性变差.

关键词 2024铝合金盐湖大气腐蚀点蚀腐蚀产物    
Abstract

Localized corrosion behavior of aluminum alloy 2024 with/without cladding exposed to salt lakes atmospheric environment in western china for 4 a was investigated. The depth of pitting, corrosion products, morphology of surface and cross-section, and corrosion potential were analyzed by SEM/EDS, OM, XRD and electrochemical analysis system. The results showed that 2024 suffered severe pitting corrosion. The cladding layer of aluminum alloy 2024 exposed for 2 a had been penetrated. Depth of pitting of aluminum alloy 2024 without cladding after 2 a exposure had reached 320 μm; meanwhile, few pitting that penetrated the whole substrate of aluminum alloy 2024 without cladding had been observed. A main corrosion product of aluminum alloy 2024 with/without cladding—[Mg1-xAlx(OH)2]x+ (Cl-, CO2-)x·mH2O (layered double hydroxides, LDH) was determined. Also, the results of electrochemistry indicated that the corrosion potential of aluminum alloy 2024 decreased gradually with the concentration of Cl- increasing. The effects of factors of salt lake atmospheric environments, corrosion product and Cl- concentration on the corrosion behavior of 2024 with/without cladding were discussed.

Key wordsaluminum alloy 2024    salt lake    atmospheric corrosion    pitting corrosion    corrosion product
收稿日期: 2013-07-16     
ZTFLH:  TG178  
基金资助:*国家自然科学基金重点项目51131007和国防技术基础项目H102011B002资助
作者简介: null

王彬彬, 男, 1985年生, 博士生

图1  
图2  
图3  
图4  
图5  
图6  
图7  
图8  
图9  
[1] Liu J A,Xie S S. Exploitation and Application of Aluminium Alloy. Beijing: Metallurgical Industry Press, 2011: 71
[1] (刘静安,谢水生. 铝合金材料应用与开发. 北京: 冶金工业出版社, 2011: 71)
[2] Vargel C. Corrosion of Aluminium. Paris: Dunod, 2004: 235
[3] Cao C N. Material Natural Environmental Corrosion of China. Beijing: Chemical Industry Press, 2005: 108
[3] (曹楚南. 中国材料的自然环境腐蚀. 北京: 化学工业出版社, 2005: 108)
[4] Lashermes M, Guilhuaudis A, Reboul M, Trentelivers G. In: Ailor W H ed., Atmospheric Corrosion, New York: John Wiley and Sons, 1982: 353
[5] Dean S W, Anthony W H. In: Dean S W, Lee T ed., Degradation of Metals in Atmosphere STP 965, Philadelphia: American Society of Testing and Materials, 1988: 191
[6] Sun S Q, Zheng Q F, Li D F, Wen J G.Corros Sci, 2009; 51: 719
[7] Sun S Q, Zheng Q F, Li D F, Hu S Q, Wen J G.Corros Sci, 2011; 53: 2527
[8] Cheng Y L, Zhang Z, Cao F H, Li J F, Zhang J Q, Wang J M, Cao C N. Corros Sci, 2004; 46: 1649
[9] Shi Y Y, Zhang Z, Su J X, Cao F H, Zhang J Q.Electrochim Acta, 2006; 51: 4977
[10] Wang Z Y, Ma T, Han W, Yu G C. Chin JNonferrous Met, 2007; 17: 326
[11] Zhang Z, Song S Z, Mo S F.Acta Metall Sin, 2004; 40: 754
[11] (张 正, 宋诗哲, 墨淑芬. 金属学报, 2004; 40: 754)
[12] Chang H, Han E H, Wang J Q, Ke W.Acta Metall Sin, 2005; 41: 556
[12] (常 红, 韩恩厚, 王俭秋, 柯 伟. 金属学报, 2005; 41: 556)
[13] Sheng H, Dong C F, Xiao K, Li X G.Acta Metall Sin, 2012; 48: 414
[13] (生 海, 董超芳, 肖 葵, 李晓刚. 金属学报, 2012; 48: 414)
[14] An B G, Zhang X Y, Song S Z, Li H X, Han E H. J Chin Soc Corros Prot, 2003; 23: 167
[14] (安百刚, 张学元, 宋诗哲, 李洪锡, 韩恩厚. 中国腐蚀与防护学报, 2003; 23: 167)
[15] Zhang X Y, Sun Z H, Liu M H, Tang Z H, Li B.J Chin Soc Corros Prot, 2007; 27: 354
[15] (张晓云, 孙志华, 刘明辉, 汤智慧, 李 斌. 中国腐蚀与防护学报, 2007; 27: 354)
[16] Sun S Q, Zhao Y B, Zheng Q F, Li D F. J Chin Soc Corros Prot, 2012; 32: 195
[16] (孙霜青, 赵予兵, 郑弃非, 李德富. 中国腐蚀与防护学报, 2012; 32: 195)
[17] Blanc C, Lavelle B, Mankowski G.Corros Sci, 1997; 39: 495
[18] Buchheit R G, Grant R P, Hlava P F, Mckenzie B, Zender G L. J Electrochem Soc, 1997; 144: 2621
[19] Guillaumin V, Mankowski G.Corros Sci, 1999; 41: 421
[20] Obispo H M, Murr L E, Arrowood R M, Trillo E A.J Mater Sci, 2000; 35: 3479
[21] Zheng X Y,Zhang M G,Xu C,Li B X. Saline Mark of China. Beijing: Science Technology Press, 2002: 1
[21] (郑喜玉,张明刚,徐 昶,李秉孝. 中国盐湖志. 北京: 科学技术出版社, 2002: 1)
[22] Wang Z Q. Pickled Soil of China. Xi'an: Shanxi Renmin Press, 1994: 251
[22] (王遵亲. 中国盐渍土. 西安: 陕西人民出版社, 1994: 251)
[23] Xiao Y D, Wang G Y, Li X G, Lin A, Zhang S P, Qin X Z, Wang Z Y.J Chin Soc Corros Prot, 2003; 23: 248
[23] (萧以德, 王光雍, 李晓刚, 林 安, 张三平, 秦晓洲, 王振尧. 中国腐蚀与防护学报, 2003: 23: 248)
[24] Zheng Q F, Sun S Q, Wen J G, Li D F.Chin J Nonferrous Met, 2009; 19: 353.
[24] (郑弃非, 孙霜青, 温军国, 李德富. 中国有色金属学报, 2009; 19: 353)
[25] Blücher D B, Svensson J E, Johansson L G.Corros Sci, 2006; 48: 1848
[26] Zheng Q F, Sun S Q, Wen G J, Li D F. J Chin Soc Corros Prot, 2010; 30: 72
[26] (郑弃非, 孙霜青, 温军国, 李德富. 中国腐蚀与防护学报, 2010; 30: 72)
[27] Wang B B, Wang Z Y, Han W, Ke W. Corros Sci, 2012; 59: 63
[28] Gou G J, Ma P H, Chu M X.Acta Phys Chim Sin, 2004; 20: 1357
[29] Wang B B, Wang Z Y, Han W, Wang C, Ke W. Chin J Nonferrous Met, 2013; 23: 1199
[30] Buchheit R G, Martinez M A, Montes L P.J Electrochem Soc, 2000; 147: 119.
[31] Cole I S, Azmat N S, Kanta A, Venkatraman M.Int Mater Rev, 2009; 54: 117
[32] Wexler A S, Seinfeld J H. Atmos Environ, 1991; 25A: 2731
[33] Ge Z Z, Wexler A S, Johnston M V. J Colloid Interf Sci, 1996; 183: 68
[34] Ge Z Z, Wexler A S, Johnston M V. J Phys Chem, 1998; 102: 173
[35] Kelly J T, Wexler A S, Chan C K, Chan M N.Atmos Environ, 2008; 42: 3717
[36] Kelly J T, Wexler A S.Atmos Environ, 2006; 40: 4450
[37] Prosek T, Lversen A, Taxén C, Thierry D.Corrosion, 2009; 65: 105
[38] Xiao H S, Dong J L, Wang L Y, Zhao L J, Wang F, Zhang Y H.Environ Sci Technol, 2008; 42: 8698
[39] Wise M E, Biskos G, Martin S T, Russell L M, Buseck P R.Aerosol Sci Technol, 2005; 39: 884
[40] Paredes S P, Valenzuela M A, Fetter G, Flores S O. J Phys ChemSolids, 2011; 72: 914
[1] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[2] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[3] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[4] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[5] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[6] 黄松鹏, 彭灿, 曹公望, 王振尧. BTA保护的白铜在模拟工业大气环境中的腐蚀行为[J]. 金属学报, 2021, 57(3): 317-326.
[7] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[8] 刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(9): 1247-1254.
[9] 高博文, 王美涵, 闫茂成, 赵洪涛, 魏英华, 雷浩. 2024铝合金表面PEDOT涂层的电化学制备及耐腐蚀性能[J]. 金属学报, 2020, 56(11): 1541-1550.
[10] 宋学鑫, 黄松鹏, 汪川, 王振尧. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(10): 1355-1365.
[11] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[12] 陈星晨, 王杰, 陈德任, 钟舜聪, 王向峰. Na对于Al早期大气腐蚀的影响[J]. 金属学报, 2019, 55(4): 529-536.
[13] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[14] 冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.
[15] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.