Please wait a minute...
金属学报  2021, Vol. 57 Issue (3): 317-326    DOI: 10.11900/0412.1961.2020.00206
  研究论文 本期目录 | 过刊浏览 |
BTA保护的白铜在模拟工业大气环境中的腐蚀行为
黄松鹏1,2, 彭灿1,2, 曹公望1,2, 王振尧1,2()
1.中国科学技术大学 材料科学与工程学院 沈阳 110016
2.中国科学院金属研究所 沈阳 110016
Corrosion Behavior of Copper-Nickel Alloys Protected by BTA in Simulated Urban Atmosphere
HUANG Songpeng1,2, PENG Can1,2, CAO Gongwang1,2, WANG Zhenyao1,2()
1.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

黄松鹏, 彭灿, 曹公望, 王振尧. 受BTA保护的白铜在模拟工业大气环境中的腐蚀行为[J]. 金属学报, 2021, 57(3): 317-326.
Songpeng HUANG, Can PENG, Gongwang CAO, Zhenyao WANG. Corrosion Behavior of Copper-Nickel Alloys Protected by BTA in Simulated Urban Atmosphere[J]. Acta Metall Sin, 2021, 57(3): 317-326.

全文: PDF(3511 KB)   HTML
摘要: 

以涂盐沉积的方式进行室内加速实验,通过SEM/EDS、XRD和电化学测试等分析技术,研究受苯并三氮唑(BTA)保护的白铜在模拟工业大气环境中的腐蚀行为。结果表明,腐蚀初期受BTA保护的白铜表面存在棱状的盐结晶,说明腐蚀介质无法完全渗入基体。随着腐蚀时间延长,其对应的腐蚀电流密度呈现先减小后增大的趋势,其原因在于表面除了BTA化学转化膜还存在因腐蚀而产生的氧化膜,2者的共同作用延缓了腐蚀的进行,而当局部的BTA膜层因不断消耗出现破损,腐蚀区域则会从此处开始扩展,腐蚀电流密度也会随之增加。对比BTA处理前后的白铜,虽然最终的腐蚀产物主要成分均为ZnSO4·6H2O和Cu4(SO4)(OH)6,呈现为疏松多孔状,但从截面形貌和动力学曲线分析,受BTA处理后的白铜腐蚀程度更轻微。

关键词 白铜苯并三氮唑(BTA)大气腐蚀SO2    
Abstract

Copper-nickel alloys are extensively used in precision instruments, ship building, building decorations, and currency manufacturing because of their excellent mechanical properties, good corrosion resistance, and silvery metallic luster. However, they are likely to suffer from discoloration owing to corrosion in the polluted atmosphere containing SO2. HSO3- and H+ exhibit ionization when SO2 is adsorbed and dissolved in the thin liquid film on the surface of white copper. These sulfide-containing media will accelerate the corrosion process and affect the surface gloss. Benzotriazole (C6H5N3, BTA) is a corrosion inhibitor commonly used in Cu and its alloys that forms a chemical conversion film. It mainly protects the copper-nickel alloys in solutions containing Cl- or seawater polluted by sulfides. However, some studies have investigated the chemical conversion films of BTA that are affected by atmospheric pollution in the medium, especially focusing on analyzing their failure mode. This experiment was conceptualized based on the aforementioned problem. The corrosion behavior of the copper-nickel alloys protected by BTA in a simulated urban atmospheric environment was analyzed through SEM/EDS, XRD, and electrochemical tests. The laboratory experiments were accelerated by salt deposition. Results showed the presence of prismatic salt crystals on the surface of the copper-nickel alloy treated using BTA during the early stage of corrosion, indicating that the corrosion medium could not completely penetrate the substrate. The corrosion current density of the alloy protected by BTA will decrease first and then increase with the increasing corrosion time. This can be attributed to the oxidation and the presence of BTA chemical conversion films on the surface of the alloy; corrosion was delayed because of the combined action of these two factors. When the BTA film was damaged because of continuous consumption in the local area, the corrosion area expanded, increasing the corrosion current density. Be similar to the samples without BTA treatment, the final corrosion products of the samples treated with BTA were also loose and porous, and the main components were ZnSO4·6H2O and Cu4(SO4)(OH)6. However, the degree of corrosion of the alloy protected by BTA was more slight according to the cross-section morphology observation and mass dynamic curve analysis.

Key wordscopper-nickel alloy    benzotriazole (BTA)    atmospheric corrosion    SO2
收稿日期: 2020-06-11     
ZTFLH:  TG174.42  
基金资助:国家自然科学基金项目(51671197)
作者简介: 黄松鹏,男,1996年生,硕士生
图1  苯并三氮唑(BTA)化学转化膜预处理流程
图2  BTA处理前后白铜表面的接触角
图3  在不同腐蚀周期下BTA处理前后白铜的腐蚀速率曲线和相应的腐蚀表面形貌
图4  在不同腐蚀周期下BTA处理前后白铜的极化曲线
Samplet / hEcorr / mVicorr / (μA·cm-2)
Before BTA treatment0-133.631.32
48-104.933.04
144-131.514.76
240-110.577.91
336-121.457.50
After BTA treatment0-71.368.88 × 10-2
48-180.294.59 × 10-2
144-117.183.89 × 10-2
240-156.451.36 × 10-1
336-171.842.23 × 10-1
表1  拟合极化曲线得到的电化学参数
图5  不同腐蚀周期下BTA处理前后白铜表面物相的XRD谱
图6  BTA处理前的白铜表面腐蚀形貌SEM像和EDS结果(a1-a3) 48 h (b1-b3) 144 h (c1-c3) 240 h (d1-d3) 336 h
图7  BTA处理后的白铜表面腐蚀形貌SEM像和EDS结果(a1-a3) 48 h (b1-b3) 144 h (c1-c3) 240 h (d1-d3) 336 h
  图8不同腐蚀周期下BTA处理前后的白铜截面形貌的SEM像(a1, b1) 48 h (a2, b2) 144 h (a3, b3) 240 h (a4, b4) 336 h
图9  BTA处理前后的白铜腐蚀336 h后的截面形貌高倍SEM像
PointCuNiZnSO
117.423.983.2815.3759.95
224.196.244.6812.4352.46
317.872.952.538.0268.62
420.393.683.249.7062.99
表2  图9中点1~4处腐蚀产物元素的EDS分析 (atomic fraction / %)
图10  BTA保护的白铜在模拟工业大气环境中的腐蚀机理图
1 Yan C W, He Y F, Lin H C, et al. Atmospheric corrosion of copper at initial stage in air containing sulfur dioxide [J]. Chin. J. Nonferrous Met., 2000, 10: 645
1 严川伟, 何毓番, 林海潮等. 铜在含SO2大气中的腐蚀初期规律和机理 [J]. 中国有色金属学报, 2000, 10: 645
2 Ge H H, Song F, Guo R F, et al. Study of the corrosion of copper in air containing sulfur dioxide [J]. J. Shanghai Univ. Elect. Power, 2010, 26: 577
2 葛红花, 宋 飞, 国瑞峰等. 大气中SO2对铜的腐蚀行为研究 [J]. 上海电力学院学报, 2010, 26: 577
3 Wang X T, Wang L Y, Sun H F, et al. Effects of SO2 and NaCl on atmospheric corrosion behavior of copper [J]. Mater. Prot., 2011, 44(9): 28
3 王秀通, 王丽媛, 孙好芬等. SO2与NaCl对铜大气腐蚀的影响 [J]. 材料保护, 2011, 44(9): 28
4 Yang M, Wang Z Y. Review of atmospheric corrosion of copper [J]. Equip. Environ. Eng., 2006, 3(4): 38
4 杨 敏, 王振尧. 铜的大气腐蚀研究 [J]. 装备环境工程, 2006, 3(4): 38
5 Badawy W A, Ismail K M, Fathi A M. Corrosion control of Cu-Ni alloys in neutral chloride solutions by amino acids [J]. Electrochim. Acta, 2006, 51: 4182
6 Bureš R, Klajmon M, Fojt J, et al. Artificial patination of copper and copper alloys in wet atmosphere with increased content of SO2 [J]. Coatings, 2019, 9: 837
7 Boutillara Y, Tombeur J L, De Weireld G, et al. In-situ copper impregnation by chemical activation with CuCl2 and its application to SO2 and H2S capture by activated carbons [J]. Chem. Eng. J., 2019, 372: 631
8 Zhao H R, Xu Y L, Chen C K, et al. New aspects of copper corrosion in a neutral NaCl solution in the presence of benzotriazole [J]. Corrosion, 2018, 74: 613
9 Yi C X, Zhu B F, Chen Y, et al. Adsorption and protective behavior of BTAH on the initial atmospheric corrosion process of copper under thin film of chloride solutions [J]. Sci. Rep., 2018, 8: 5606
10 Xie W Z, Li H S, Li Z L, et al. Research progress of inhibition mechanism of benzotriazole as corrosion inhibitor of copper [J]. Mater. Prot., 2013, 46(3): 45
10 谢文州, 郦和生, 李志林等. 铜缓蚀剂苯并三氮唑缓蚀机理的研究进展 [J]. 材料保护, 2013, 46(3): 45
11 Fateh A, Aliofkhazraei M, Rezvanian A R. Review of corrosive environments for copper and its corrosion inhibitors [J]. Arab. J. Chem., 2020, 13: 481
12 Wang Y Q, Shao Y W, Meng G Z, et al. Study on passivating treatment of Cu-Ni alloy in compound passivant containing benzotriazole [J]. Acta Metall. Sin., 2012, 48: 744
12 王艳秋, 邵亚薇, 孟国哲等. Cu-Ni合金BTA复配体系钝化处理工艺研究 [J]. 金属学报, 2012, 48: 744
13 Chang T R, Leygraf C, Wallinder I O, et al. Understanding the barrier layer formed via adding BTAH in copper film electrodeposition [J]. J. Electrochem. Soc., 2019, 166: D10
14 Cho B J, Shima S, Hamada S, et al. Investigation of Cu-BTA complex formation during Cu chemical mechanical planarization process [J]. Appl. Surf. Sci., 2016, 384: 505
15 Finšgar M, Milošev I. Inhibition of copper corrosion by 1,2,3-benzotriazole: A review [J]. Corros. Sci., 2010, 52: 2737
16 Dugdale I, Cotton J B. An electrochemical investigation on the prevention of staining of copper by benzotriazole [J]. Corros. Sci., 1963, 3: 69
17 Kokalj A, Peljhan S, Finšgar M, et al. What determines the inhibition effectiveness of ATA, BTAH, and BTAOH corrosion inhibitors on copper? [J]. J. Am. Chem. Soc., 2010, 132: 16657
18 Chen Z Y, Huang L, Zhang G A, et al. Benzotriazole as a volatile corrosion inhibitor during the early stage of copper corrosion under adsorbed thin electrolyte layers [J]. Corros. Sci., 2012, 65: 214
19 Finšgar M, Merl D K. An electrochemical, long-term immersion, and XPS study of 2-mercaptobenzothiazole as a copper corrosion inhibitor in chloride solution [J]. Corros. Sci., 2014, 83: 164
20 Chen W J, Hao L, Dong J H, et al. Effect of SO2 on corrosion evolution of Q235B steel in simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2014, 50: 802
20 陈文娟, 郝 龙, 董俊华等. 模拟工业-海岸大气中SO2对Q235B钢腐蚀行为的影响 [J]. 金属学报, 2014, 50: 802
21 Yuan X J, Zhang J X, Ji X W, et al. Corrosion behavior of galvanized steel for power transmission tower in polluted environment [J]. Corros. Sci. Prot. Technol., 2013, 25: 13
21 原徐杰, 张俊喜, 季献武等. 电力输电杆塔用镀锌钢在污染环境中的腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2013, 25: 13
22 Zheng Y F. Bright pickling and passivation of copper and copper alloy [J]. Electroplat. Pollut. Control, 1998, 18(2): 25
22 郑永峰. 铜及铜合金光亮酸洗及钝化工艺 [J]. 电镀与环保, 1998, 18(2): 25
23 Zhou Y, Xu S Y, Guo L, et al. Evaluating two new Schiff bases synthesized on the inhibition of corrosion of copper in NaCl solutions [J]. RSC Adv., 2015, 5: 14804
24 Žerjav G, Milošev I. Protection of copper against corrosion in simulated urban rain by the combined action of benzotriazole, 2-mercaptobenzimidazole and stearic acid [J]. Corros. Sci., 2015, 98: 180
25 Chen W J, Hao L, Dong J H, et al. Effect of sulphur dioxide on the corrosion of a low alloy steel in simulated coastal industrial atmosphere [J]. Corros. Sci., 2014, 83: 155
26 Chen Z Y. Atmospheric Corrosion of Copper and Research Methods [M]. Beijing: Science Press, 2011: 156
26 陈卓元. 铜的大气腐蚀及其研究方法 [M]. 北京: 科学出版社, 2011: 156
27 Singh D D N, Pandya A. Role of self-assembled monolayer of 1,2,3-benzotriazole in protecting copper artifacts covered with sulfide film [J]. Corrosion, 2010, 66: 115002
28 Hong S, Chen W, Luo H Q, et al. Inhibition effect of 4-amino-antipyrine on the corrosion of copper in 3 wt. % NaCl solution [J]. Corros. Sci., 2012, 57: 270
29 Wu J, Zhou X L, Dong C F, et al. Research progress on atmospheric corrosion of copper and its alloys [J]. Corros. Sci. Prot. Technol., 2010, 22: 464
29 吴 军, 周贤良, 董超芳等. 铜及铜合金大气腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 464
30 Jiang Y K, Ge H H, Xue H, et al. Corrosion behavior of brass with SO2 pollutants deposited on surface in atmosphere [J]. Corros. Prot., 2017, 38: 1
30 蒋以奎, 葛红花, 薛 慧等. 表面沉积有SO2污染物的黄铜在大气中的腐蚀行为 [J]. 腐蚀与防护, 2017, 38: 1
31 Allam N K, Nazeer A A, Ashour E A. A review of the effects of benzotriazole on the corrosion of copper and copper alloys in clean and polluted environments [J]. J. Appl. Electrochem., 2009, 39: 961
32 Al-Kharafi F M, Abdullah A M, Ateya B G. An extraordinary effect of benzotriazole and sulfide ions on the corrosion of copper [J]. Electrochem. Solid-State Lett., 2006, 9: B19
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[3] 刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(9): 1247-1254.
[4] 宋学鑫, 黄松鹏, 汪川, 王振尧. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(10): 1355-1365.
[5] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[6] 陈星晨, 王杰, 陈德任, 钟舜聪, 王向峰. Na对于Al早期大气腐蚀的影响[J]. 金属学报, 2019, 55(4): 529-536.
[7] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[8] 郭明晓, 潘晨, 王振尧, 韩薇. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究[J]. 金属学报, 2018, 54(1): 65-75.
[9] 韩军科,严红,黄耀,周鲁军,杨善武. 耐候钢表面氧化皮的结构特征及其对大气腐蚀行为的影响[J]. 金属学报, 2017, 53(2): 163-174.
[10] 陈文娟, 郝龙, 董俊华, 柯伟, 文怀梁. 模拟工业-海岸大气中pH值对Q235B钢腐蚀行为的影响*[J]. 金属学报, 2015, 51(2): 191-200.
[11] 陈文娟, 郝龙, 董俊华, 柯伟, 文怀梁. 模拟工业-海岸大气中SO2对Q235B钢腐蚀行为的影响*[J]. 金属学报, 2014, 50(7): 802-810.
[12] 王先飞, 熊守美. 使用SO2/Air/N2气氛作为纯Mg及 AZ91D合金的熔炼保护*[J]. 金属学报, 2014, 50(1): 32-40.
[13] 王彬彬, 王振尧, 曹公望, 刘艳洁, 柯伟. 2024铝合金在中国西部盐湖大气环境中的局部腐蚀行为*[J]. 金属学报, 2014, 50(1): 49-56.
[14] 傅欣欣, 董俊华, 韩恩厚, 柯伟. 低碳钢Q235在模拟酸雨大气腐蚀条件下的电化学阻抗谱监测*[J]. 金属学报, 2014, 50(1): 57-63.
[15] 汪兵,刘清友,王向东. 晶粒尺寸对超低碳IF钢耐大气腐蚀性能的影响[J]. 金属学报, 2012, 48(5): 601-606.