Please wait a minute...
金属学报  2014, Vol. 50 Issue (1): 57-63    DOI: 10.3724/SP.J.1037.2013.00278
  论文 本期目录 | 过刊浏览 |
低碳钢Q235在模拟酸雨大气腐蚀条件下的电化学阻抗谱监测*
傅欣欣, 董俊华(), 韩恩厚, 柯伟
中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY MONITORING ON MILD STEEL Q235 IN SIMULATED INDUSTRIAL ATMOSPHERIC CORROSION ENVIORNMENT
FU Xinxin, DONG Junhua(), HAN En-hou, KE Wei
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

傅欣欣, 董俊华, 韩恩厚, 柯伟. 低碳钢Q235在模拟酸雨大气腐蚀条件下的电化学阻抗谱监测*[J]. 金属学报, 2014, 50(1): 57-63.
Xinxin FU, Junhua DONG, En-hou HAN, Wei KE. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY MONITORING ON MILD STEEL Q235 IN SIMULATED INDUSTRIAL ATMOSPHERIC CORROSION ENVIORNMENT[J]. Acta Metall Sin, 2014, 50(1): 57-63.

全文: PDF(5323 KB)   HTML
摘要: 

使用干湿交替方法模拟酸雨大气腐蚀条件, 并利用电化学阻抗谱(EIS)技术对腐蚀过程进行实时监测, 对低碳钢Q235在模拟酸雨大气环境下的腐蚀行为进行研究, 着重探讨阴极还原反应的演化特征. 结果表明, 低碳钢Q235的阴极反应为氧的还原反应和锈层(腐蚀产物)的还原反应并行. 随着干湿交替循环次数的增加, 氧还原反应的活性逐渐减弱, 最后几乎完全消失; 而锈层还原反应的活性逐渐增强, 并取代氧还原反应成为主要的阴极反应. 在同一个干湿交替周期内, 腐蚀速率随着液膜厚度的减小呈现先增加, 然后迅速降低的规律, 这是由于液膜厚度对腐蚀反应同时存在2种效果相反的作用所致.

关键词 低碳钢大气腐蚀电化学阻抗谱干湿交替    
Abstract

As mild steels are the most widely used structure materials, it is no doubt that the study on their atmospheric corrosion mechanism is of great significance. Traditional study on atmospheric corrosion of mild steels emphasized more on on-site experiments and data collection and physical analysis. Relatively, application of electrochemical researching methods has not been frequently used in this field. Electrochemical impedance spectroscopy (EIS) method has been highly valued by electrochemists due to its multiple advantages. However, it has been less used in study of corrosion process of mild steels after the rust has been generated. As a matter of fact, during the service life of mild steel in atmospheric environments, the rust period is much longer than naked steel period due to the low corrosion resistance of these steels. Therefore, it is more meaningful to study the corrosion behavior of steels with rusts both for development of new weathering steels and for the prediction of the service life of weathering steels. In this work, the corrosion behavior of mild steel Q235 under simulated industrial atmospheric corrosive condition was monitored and studied by EIS method, with a focus on the evolution of cathode reactions. The result showed that there existed a critical condition of electrolyte film for corrosion rate of mild steel Q235 both for the substrate and rusted surface during wet-dry cycles. Comparison and analysis showed that, two parallel reactions, the reduction of oxygen and the reduction of rust, existed at the cathode during the corrosion process. With the increase of the wet-dry cycles, the activity of oxygen reduction tended to decrease, and almost disappeared in the end; while the activity of rust deduction tended to increase and became the main cathode reaction in a short period. In each wet-dry cycle, the corrosion rate first increased then decreased with the decrease of the electrolyte layer thickness, which was caused by the two synchronous and opposite effects on the corrosion reactions.

Key wordsmild steel    atmospheric corrosion    electrochemical impedance spectroscopy (EIS)    wet-dry cycle
收稿日期: 2013-05-22     
ZTFLH:  TG172  
基金资助:* 国家自然科学基金资助项目50499336
作者简介: null

傅欣欣, 女, 1983 年生, 博士

图 1  
图2  
图3  
[1] Ke W. China Corrosion Survey Report. Beijing: Chemical Industry Press, 2003: 1
[1] (柯 伟. 中国腐蚀调查报告. 北京: 化学工业出版社, 2003: 1)
[2] Leygraf C,Graedel T,Translated byHan E H,et al. Atmospheric Corrosion. Beijing: Chemical Industry Press, 2005: 2
[2] (Leygraf C,Graedel T 著;韩恩厚 等译. 大气腐蚀. 北京: 化学工业出版社, 2005: 2)
[3] Nishimura T, Katayama H, Noda K, Kodama T.Corrosion, 2000; 56: 934
[4] Friel J J.Corrosion, 1986; 42: 422
[5] Munier G B, Psota L A, Reagor B T, Russiello B, Sinclair J D.J Electrochem Soc, 1980; 127: 265
[6] Oesch S.Corros Sci, 1996; 38: 1357
[7] Özcan M, Dehri İ, Erbil M.Prog Org Coat, 2002; 44: 279
[8] Abdel S H, Sa’eh A G, Shoeib M A, Barakat Y.Electrochim Acta, 2007; 52: 7068
[9] Peter S, Sudipta R, David S, Stephen M, David P, John L.Chem Eng Sci, 2011; 66: 5775
[10] Zhang X Y, Han E H, Li H X.J Chin Soc Corros Prot, 2002; 22: 316
[10] (张学元, 韩恩厚, 李洪锡. 中国腐蚀与防护学报, 2002; 22: 316)
[11] An B G, Zhang X Y, Han E H, Li H X.Acta Metall Sin, 2002; 38: 755
[11] (安百刚, 张学元, 韩恩厚, 李洪锡. 金属学报, 2002; 38: 755)
[12] Scully J C,Translated by Li Q Z . The Fundamentals of Corrosion. Beijing: China Water Power Press, 1984: 108
[12] (J C 斯库里 著;李启中 译. 腐蚀原理. 北京: 水利电力出版社, 1984: 108)
[13] Evans U R, Taylor C A.Corros Sci, 1972; 12: 227
[14] Evans U R, Taylor C A.Corros Sci, 1986; 8: 447
[15] Evans U R.Corros Sci, 1969; 9: 813
[16] Nishikata A, Ichihara Y, Tsuru T.Corros Sci, 1995; 6: 897
[17] Nishikata A, Yamashita Y, Katayama H, Tsuru T. Corros Sci,1995; 12: 2059
[18] Nishikata A, Ichihara Y, Tsuru T. Electrochim Acta, 1996; 7-8:1057
[19] Nishikata A, Ichihara Y, Hayashi Y, Tsuru T.J Electrochem Soc, 1997; 4: 1244
[20] Katayama H, Noda K, Masuda H, Nagasawa M, Itagaki M, Watanabe K.Corros Sci, 2005; 47: 2599
[21] Dong J, Dong J H, Han E H, Liu C M, Ke W.Corros Sci Prot Technol, 2006; 18: 414
[21] (董 杰, 董俊华, 韩恩厚, 刘春明, 柯 伟. 腐蚀科学与防护技术, 2006; 18: 414)
[22] Fu X X, Dong J H, Han E H, Ke W.Sensors, 2009; 9: 10400
[23] Tomashov N D.Corrosion, 1964; 20: 7t
[24] Zhang Q C, Wu J S, Zheng W L, Chen J G, Li A B, Wang J J, Yang X F.Mater Rev, 2000; 14(7): 12
[24] (张全成, 吴建生, 郑文龙, 陈家光, 李爱柏, 王建军, 杨晓芳. 材料导报, 2000; 14(7): 12)
[25] Cao C N,Zhang J Q. Introduction to Electrochemical Impedance Spectroscopy. Beijing: Science Press, 2002: 20
[25] (曹楚南,张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 20)
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[4] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[5] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[6] 黄松鹏, 彭灿, 曹公望, 王振尧. BTA保护的白铜在模拟工业大气环境中的腐蚀行为[J]. 金属学报, 2021, 57(3): 317-326.
[7] 刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(9): 1247-1254.
[8] 宋学鑫, 黄松鹏, 汪川, 王振尧. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(10): 1355-1365.
[9] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[10] 刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
[11] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[12] 陈星晨, 王杰, 陈德任, 钟舜聪, 王向峰. Na对于Al早期大气腐蚀的影响[J]. 金属学报, 2019, 55(4): 529-536.
[13] 白杨, 王振华, 李相波, 李焰. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为[J]. 金属学报, 2019, 55(10): 1338-1348.
[14] 郭明晓, 潘晨, 王振尧, 韩薇. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究[J]. 金属学报, 2018, 54(1): 65-75.
[15] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.