Please wait a minute...
金属学报  2019, Vol. 55 Issue (4): 457-468    DOI: 10.11900/0412.1961.2018.00475
  本期目录 | 过刊浏览 |
SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响
李恺强1,杨璐嘉2,徐云泽1(),王晓娜3,黄一1
1. 大连理工大学船舶与海洋工程学院 大连 116024
2. 大连理工大学创新创业学院 大连 116024
3. 大连理工大学物理与光电学院 大连 116024
Influence of SO42- on the Corrosion Behavior of Q235B Steel Bar in Simulated Pore Solution
Kaiqiang LI1,Lujia YANG2,Yunze XU1(),Xiaona WANG3,Yi HUANG1
1. School of Naval Architecture & Ocean Engineering, Dalian University of Technology, Dalian 116024, China
2. School of Innovation and Entrepreneurship, Dalian University of Technology, Dalian 116024, China
3. School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
Kaiqiang LI, Lujia YANG, Yunze XU, Xiaona WANG, Yi HUANG. Influence of SO42- on the Corrosion Behavior of Q235B Steel Bar in Simulated Pore Solution[J]. Acta Metall Sin, 2019, 55(4): 457-468.

全文: PDF(12674 KB)   HTML
摘要: 

通过阳极极化曲线、EIS、Mott-Schottky (M-S)以及恒电位极化测量研究了不同pH值模拟混凝土孔隙溶液中SO42-对Q235B钢筋钝化和腐蚀行为的影响。极化曲线测量结果表明,在pH值高于11的模拟孔隙液中,SO42-对Q235B钢的钝化膜没有破坏作用,而在pH值为10的模拟孔隙液中,少量SO42-的存在就会造成Q235B钢表面钝化膜的破裂,从而导致点蚀的萌发。EIS和M-S测量结果表明,碳钢表面的钝化膜在低pH值的模拟孔隙液中稳定性较差并具有更高的缺陷浓度,从而促进了SO42-对碳钢的侵蚀性。结合恒电位极化测试和SEM观测进一步研究了SO42-对碳钢钝化膜的破坏作用。在高pH值的模拟孔隙液中,SO42-在钝化膜的形成阶段能够抑制钝化膜的生长,造成亚稳态点蚀的出现,而在低pH值的模拟孔隙液中,SO42-可以聚集在钝化膜的缺陷处,造成钝化膜的破损和稳态点蚀的发展。

关键词 Q235B钢钝化膜SO42-点蚀    
Abstract

Cl- and SO42- are most common aggressive ions containing in the seawater which may cause the localized corrosion of reinforcement structures. It is found that a protective passive film will form on the steel surface in the concrete pore solution. The localized breakdown of the passive film caused by the aggressive ions and the carbonation are the main reason for the localized corrosion initiation of reinforcements. In the previous studies, it is found that the performances of the SO42- on the rebar corrosion were quite different in different pH value conditions and the test results did not unify. Therefore, the influence of pH value and the SO42- on the corrosion behavior of Q235B carbon steel in the simulated pore solution was studied using anodic polarization, electrochemical impedance spectra (EIS), Mott-Schottky (M-S) and potentiostatic polarization methods. The anodic polarization curves indicate that when the pH value of the simulated pore solution was higher than 11, SO42- had no damage to the passive film. However, once the pH value of the simulated pore solution decreased to 10, a small amount of SO42- can lead to the breakdown of the passive film and induce pitting initiation. EIS and M-S measurement results suggest that the stability of the passive film would decrease with the decreasing of the solution pH. The concentration of the defect would increase in the passive film due to the pH decrease. The stability reduction and the increase of defect concentration both can lead to the passive film become fragile and more easily to be destroyed by SO42-. Through the potentiostatic polarization test in conjunction with SEM observation, it is found that SO42- can inhibit the growth of the passive film during the initial film formation period and lead to the appearance of metastable pitting corrosion under high pH value conditions. In the low pH value conditions, SO42- could accumulate at the defect of the passive film and lead to stable pitting propagate on the steel surface.

Key wordsQ235B steel    passive film    SO42-    pitting corrosion
收稿日期: 2018-10-16     
ZTFLH:  O646  
基金资助:十三五国家科技支撑计划项目(No.2016ZX05057)
作者简介: 李恺强,男,1993年生,博士生
Test groupPre-passivation conditionpH value of thetest solution

SO42- concentration

mol·L-1

ANo pre-passivation12.60
BNo pre-passivation12.60.1
C4 h pre-passivation in pH=12.6 pore solution without SO42-12.60.1
DNo pre-passivation10.00
ENo pre-passivation10.00.1
F4 h pre-passivation in pH=10 pore solution without SO42-10.00.1
表1  恒电位极化测量实验分组情况
图1  不同pH值和不同SO42-浓度的模拟孔隙液中Q235钢的阳极极化曲线
图2  不同pH值模拟孔隙液中Q235B钢的Nyquist图和Bode图
图3  用于阻抗拟合的等效电路图
图4  EIS的主要参数拟合结果
图5  不同pH值模拟孔隙液中Q235B钢的Mott-Schottky测量结果
pHVfb / mVND / (1021 cm-3)
12.6-8082.24
12.0-6852.66
11.0-5123.04
10.0-4103.73
表2  不同pH值模拟孔隙液中M-S曲线拟合结果
图6  表1中A~C组实验中电极表面的电流噪声波动情况
图7  A~C组实验完成后电极的表面形貌SEM像
图8  表1中D~F组实验中电极表面的电流噪声波动情况
图9  D~F组实验完成后电极的表面形貌SEM像
1 Cao Y H, Dong S G, Zheng D J, et al. Multifunctional inhibition based on layered double hydroxides to comprehensively control corrosion of carbon steel in concrete [J]. Corros. Sci., 2017, 126: 166
2 Ales C, Kosec T, Legat A. Characterization of steel corrosion in mortar by various electrochemical and physical techniques [J]. Corros. Sci., 2013, 75: 47
3 Valipour M, Shekarchi M, Ghods P. Comparative studies of experimental and numerical techniques in measurement of corrosion rate and time-to-corrosion-initiation of rebar in concrete in marine environments [J]. Cem. Concr. Compos., 2014, 48: 98
4 Tan Y J. Experimental methods designed for measuring corrosion in highly resistive and inhomogeneous media [J]. Corros. Sci., 2011, 53: 1145.
5 Chakri S, Frateur I, Orazem M E, et al. Improved EIS analysis of the electrochemical behaviour of carbon steel in alkaline solution [J]. Electrochim. Acta, 2017, 246: 924.
6 Mundra S, Criado M, Bernal S A, et al. Chloride-induced corrosion of steel rebars in simulated pore solutions of alkali-activated concretes [J]. Cem. Concr. Res., 2017, 100: 385
7 Qiao B, Du R G, Chen W, et al. Effect of NO2- and Cl- on the corrosion behavior of reinforcing steel in simulated concrete pore solutions [J]. Acta Metall. Sin., 2010, 46: 245
7 乔 冰, 杜荣归, 陈 雯等. NO2-和Cl-对模拟混凝土孔隙液中钢筋腐蚀行为的影响 [J]. 金属学报, 2010, 46: 245
8 Kumar M P, Mini K M, Rangarajan M. Ultrafine GGBS and calcium nitrate as concrete admixtures for improved mechanical properties and corrosion resistance [J]. Constr. Build. Mater., 2018, 182: 249
9 Angst U, Elsener B, Larsen C K, et al. Critical chloride content in reinforced concrete—A review [J]. Cem. Concr. Res., 2009, 39: 1122
10 Ann K Y, Song H W. Chloride threshold level for corrosion of steel in concrete [J]. Corros. Sci., 2007, 49: 4113
11 Jin Z Q, Zhao X, Zhao T J, et al. Effect of Ca(OH)2, NaCl, and Na2SO4 on the corrosion and electrochemical behavior of rebar [J]. Chin. J. Oceanol. Limnol., 2017, 35: 681
12 Ghods P, Isgor O B, McRae G, et al. The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement [J]. Cem. Concr. Compos., 2009, 31: 2
13 El Aal E E A, El Wanees S A, Diab A, et al. Environmental factors affecting the corrosion behavior of reinforcing steel III. Measurement of pitting corrosion currents of steel in Ca(OH)2 solutions under natural corrosion conditions [J]. Corros. Sci., 2009, 51: 1611
14 El Haleem S M A, El Wanees S A, El Aal E E A, et al. Environmental factors affecting the corrosion behavior of reinforcing steel II. Role of some anions in the initiation and inhibition of pitting corrosion of steel in Ca(OH)2 solutions [J]. Corros. Sci., 2010, 52: 292
15 El Haleem S M A, El Wanees S A, Bahgat A. Environmental factors affecting the corrosion behaviour of reinforcing steel. V. Role of chloride and sulphate ions in the corrosion of reinforcing steel in saturated Ca(OH)2 solutions [J]. Corros. Sci., 2013, 75: 1
16 Liu G J, Zhang Y S, Ni Z W, et al. Corrosion behavior of steel submitted to chloride and sulphate ions in simulated concrete pore solution [J]. Constr. Build. Mater., 2016, 115: 1
17 Al-Amoudi O S B, Maslehuddin M. The effect of chloride and sulfate ions on reinforcement corrosion [J]. Cem. Concr. Res., 1993, 23: 139
18 Al-Amoudi O S B, Rasheeduzzafar A A, Maslehuddin M, et al. Influence of sulfate ions on chloride-induced reinforcement corrosion in Portland and blended cement concretes [J]. Cem. Concr. Aggreg., 1994, 16(1): 3
19 Shaheen F, Pradhan B. Effect of chloride and conjoint chloride-sulfate ions on corrosion of reinforcing steel in electrolytic concrete powder solution (ECPS) [J]. Constr. Build. Mater., 2015, 101: 99
20 Shaheen F, Pradhan B. Influence of sulfate ion and associated cation type on steel reinforcement corrosion in concrete powder aqueous solution in the presence of chloride ions [J]. Cem. Concr. Res., 2017, 91: 73
21 Williamson J, Isgor O B. The effect of simulated concrete pore solution composition and chlorides on the electronic properties of passive films on carbon steel rebar [J]. Corros. Sci., 2016, 106: 82
22 Yang L J, Xu Y Z, Zhu Y S, et al. Evaluation of interaction effect of sulfate and chloride ions on reinforcements in simulated marine environment using electrochemical methods [J]. Int. J. Electrochem. Sci., 2016, 52: 6943
23 Xu Y Z, He L M, Yang L J, et al. Electrochemical study of steel corrosion in saturated calcium hydroxide solution with chloride ions and sulfate ions [J]. Corrosion, 2018, 74: 1063
24 Vigneshwaran K K K, Permeh S, Echeverría M, et al. Corrosion of post-tensioned tendons with deficient grout, part 1: Electrochemical behavior of steel in alkaline sulfate solutions [J]. Corrosion, 2018, 74: 362
25 Ai Z Y, Jiang J Y, Sun W, et al. Enhanced passivation of alloy corrosion-resistant steel Cr10Mo1 under carbonation—Passive film formation, the kinetics and mechanism analysis [J]. Cem. Concr. Compos., 2018, 92: 178
26 Ai Z Y, Jiang J Y, Sun W, et al. Passive behaviour of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions with different pH [J]. Appl. Surf. Sci., 2016, 389: 1126
27 Sánchez M, Gregori J, Alonso C, et al. Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores [J]. Electrochim. Acta, 2007, 52: 7634
28 Chakri S, Frateur I, Orazem M E, et al. Improved EIS analysis of the electrochemical behaviour of carbon steel in alkaline solution [J]. Electrochim. Acta, 2017, 246: 924
29 Saremi M, Mahallati E. A study on chloride-induced depassivation of mild steel in simulated concrete pore solution [J]. Cem. Concr. Res., 2002, 32: 1915
30 Li Y, Cheng Y F. Passive film growth on carbon steel and its nanoscale features at various passivating potentials [J]. Appl. Surf. Sci., 2017, 396: 144
31 Chen W, Du R G, Ye C Q, et al. Study on the corrosion behavior of reinforcing steel in simulated concrete pore solutions using in situ Raman spectroscopy assisted by electrochemical techniques [J]. Electrochim. Acta, 2010, 55: 5677
32 Sato N. Anodic breakdown of passive films on metals [J]. J. Electrochem. Soc., 1982, 129: 255
33 El Haleem S M A, El Aal E E A, El Wanees S A, et al. Environmental factors affecting the corrosion behaviour of reinforcing steel: I. The early stage of passive film formation in Ca(OH)2 solutions [J]. Corros. Sci., 2010, 52: 3875
34 Freire L, Nóvoa X R, Montemor M F, et al. Study of passive films formed on mild steel in alkaline media by the application of anodic potentials [J]. Mater. Chem. Phys., 2009, 114: 962
35 Morrison S R. Electrochemistry at semiconductor and oxidized metal electrodes [M]. New York: Plenum Press, 1980: 416
36 MacDonald D D. The history of the point defect model for the passive state: A brief review of film growth aspects [J]. Electrochim. Acta, 2011, 56: 1761
37 Dong Z H, Shi W, Guo X P. Initiation and repassivation of pitting corrosion of carbon steel in carbonated concrete pore solution [J]. Corros. Sci., 2011, 56: 5890
38 Lu Y F, Dong J H, Ke W. Effects of SO42- on the corrosion behavior of NiCu Low alloy steel in deaerated bicarbonate solutions [J]. Acta Metall. Sin., 2015, 51: 1067
38 卢云飞, 董俊华, 柯 伟. SO42-对NiCu低合金钢在除氧NaHCO3溶液中腐蚀行为的影响 [J]. 金属学报, 2015, 51: 1067
39 Niu L B, Nakada K. Effect of chloride and sulfate ions in simulated boiler water on pitting corrosion behavior of 13Cr steel [J]. Corros. Sci., 2015, 96: 171
40 Kolics A, Polkinghorne J C, Wieckowski A. Adsorption of sulfate and chloride ions on aluminum [J]. Electrochim. Acta, 1998, 43: 2605
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[3] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[4] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[5] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[6] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[7] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[8] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[9] 冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.
[10] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[11] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[12] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[13] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[14] 夏大海, 宋诗哲, 王俭秋, 骆静利. 690和800合金在高温高压水中硫致腐蚀失效研究进展[J]. 金属学报, 2017, 53(12): 1541-1554.
[15] 范林,丁康康,郭为民,张彭辉,许立坤. 静水压力和预应力对新型Ni-Cr-Mo-V高强钢腐蚀行为的影响*[J]. 金属学报, 2016, 52(6): 679-688.