Please wait a minute...
金属学报  2023, Vol. 59 Issue (2): 297-308    DOI: 10.11900/0412.1961.2022.00196
  研究论文 本期目录 | 过刊浏览 |
2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制
夏大海(), 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬()
天津大学 材料科学与工程学院 天津市材料复合与功能化重点实验室 天津 300350
Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface
XIA Dahai(), JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin()
Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
引用本文:

夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
Dahai XIA, Yuanyuan JI, Yingchang MAO, Chengman DENG, Yu ZHU, Wenbin HU. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. Acta Metall Sin, 2023, 59(2): 297-308.

全文: PDF(3006 KB)   HTML
摘要: 

搭建了由电动推杆、时间继电器及4个腐蚀电化学传感器组成的模拟动态海水/大气界面(简称为水气界面)腐蚀测试平台,综合采用腐蚀电位监测、电化学阻抗谱(EIS)技术、电化学噪声(EN)技术以及表面和截面形貌分析,研究了2024铝合金在模拟动态水气界面区的局部腐蚀行为与机制,并比较了其与全浸区腐蚀行为的差异性。结果表明,动态水气界面区腐蚀产物呈“连续分布”特征,主要是由于试样向上移出水面过程中蚀孔内阳极溶解产生的Al3+流出,与界面区丰富的氧结合生成腐蚀产物;全浸区腐蚀产物分布较为分散。水气界面区随着铝合金浸入和移出水面,腐蚀电位呈现周期性“下降-上升”波动,波动幅值为5~10 mV。全浸区与水气界面区的水线上方由于腐蚀电位较高所以为阴极区,水线下方为阳极区;但腐蚀电位差异不大,因此宏观腐蚀电池作用不明显。EIS结果表明,水气界面区高频容抗弧半径均呈现先增大后减小趋势,界面区的腐蚀产物膜由于覆盖度大,比全浸区的腐蚀产物膜耐蚀性好。EN结果表明,水气界面区电流噪声的波动幅值先减小后增大,表明局部腐蚀敏感性先减小后增大,电流噪声的功率谱密度(PSD)高频线性区斜率均小于-20 dB/dec,表明其腐蚀类型均为局部腐蚀。和全浸区相比,水气界面区的蚀孔尺寸小,孔蚀发展速率较慢,这主要是因为水气界面区的O含量高,O2通过扩散到达蚀孔内部发生还原反应,消耗H+,进而提升蚀孔内的pH值。

关键词 海水/大气界面铝合金点蚀电化学阻抗谱电化学噪声腐蚀电位    
Abstract

A seawater corrosion test platform to simulate the dynamic seawater/air interface is constructed, comprising an electric putter, a time relay, and four corrosion electrochemical sensors. The localized corrosion mechanism of 2024 aluminum alloy in a simulated dynamic seawater/air interface is investigated by corrosion potential monitoring, electrochemical impedance spectroscopy (EIS), electrochemical noise (EN) measurements, and the analysis of the surface and cross-section morphology. The differences in the corrosion behavior at the seawater/air interfacial region and that of full immersion region are discussed. The results showed that the corrosion products at the dynamic seawater/air interfacial region are continuously distributed, which is mainly due to the dissolved Al3+ flowing from the pits and reacting with the oxygen in the dynamic seawater/air interfacial region. The distribution of corrosion products in the entire leaching area is more dispersed. As aluminum alloy is immersed and removed from water periodically, the corrosion potential fluctuates periodically with an amplitude of 5-10 mV. Due to the high corrosion potential in the seawater/air interfacial region, the aluminum alloy above the waterline behaves as the cathode, and that below the waterline acts as the anode. However, because of the subtle difference in the corrosion potential, the galvanic corrosion effect is not obvious. The results of EIS revealed that the high-frequency capacitive arc radius of both seawater/air interfacial region and full immersion zone increased first and then decreased, and the corrosion product film in the interface zone had better corrosion resistance than that in the full immersion zone. The results of the EN test showed that the fluctuation amplitude of current noise decreased first and then increased, indicating that the local corrosion sensitivity decreased first and then increased. The slope of the high-frequency linear region of the power spectral density of current noise was less than -20 dB/dec, indicating that the corrosion type was local corrosion. The pit size at the seawater/air interface was much smaller than that in full immersion region, because the oxygen in the seawater/air interface region could be easily reduced within the pits by consuming H+, thereby increasing the pH value within the pits.

Key wordsseawater/air interface    aluminum alloy    pitting corrosion    EIS    electrochemical noise    corrosion potential
收稿日期: 2022-04-27     
ZTFLH:  O646  
基金资助:国家自然科学基金项目(52171077);国家自然科学基金项目(52031007)
作者简介: 夏大海,男,1984年生,副教授,博士
图1  自行搭建的模拟动态水气界面综合腐蚀测试平台
图2  动态水气界面2024铝合金的腐蚀电位随“浸入-移出”水面的周期性变化
图3  海水/大气界面区和全浸区的EIS
图4  2024铝合金在水气界面和全浸区的电化学等效电路模型
图5  采用Measurement Model拟合得到的极化电阻(Rp)和有效电容(Ceff)
图6  2024 铝合金在水气界面区的电流噪声和电位噪声时域谱
图7  2024 铝合金在全浸区的电流噪声和电位噪声时域谱
图8  2024 铝合金在水气界面区和全浸区的电化学噪声数据的快速Fourier变换分析
图9  2024铝合金大气区、水气界面区和全浸区宏观腐蚀形貌随时间的变化情况
图10  腐蚀54 d后2024铝合金表面不同区域的平均腐蚀深度和孔蚀密度
图11  2024铝合金大气区、水气界面区和全浸区腐蚀54 d后的微观形貌
PointOMgAlClSiSFe
175.6321.03023.1640.174---
255.4891.76242.5080.240---
382.8610.53715.2820.7290.4080.184-
434.0982.30861.5430.2551.4670.328-
563.0922.11831.8301.6430.9010.417-
658.2592.63037.9470.2180.7410.205-
782.0991.45515.1580.2740.8040.209-
846.2032.67749.4970.2041.2090.210-
969.0781.80324.7340.1883.2640.2840.648
表1  图11中标记的9个点的EDS分析结果 (atomic fraction / %)
1 Deng Y L, Zhang X M. Development of aluminium and aluminium alloy[J]. Chin. J. Nonferrous Met., 2019, 29: 2115
1 邓运来, 张新明. 铝及铝合金材料进展[J]. 中国有色金属学报, 2019, 29: 2115
2 Huang Y B, Zhou K K, Ba G Z, et al. The corrosion status of amphibious vehicles along the coast and integrated corrosion control technology[J]. Acta Armamentarii, 2016, 37: 1291
2 黄燕滨, 周科可, 巴国召 等. 沿海两栖车辆腐蚀现状及腐蚀综合控制技术[J]. 兵工学报, 2016, 37: 1291
doi: 10.3969/j.issn.1000-1093.2016.07.018
3 Jiang W, Wang J E. Analysis of choosing aluminum on mainstructure of amphibious aircraft[J]. Civ. Aircr. Des. Res., 2015, (3): 60
3 江 武, 王金娥. 某型水陆两栖飞机主结构铝合金材料选用分析[J]. 民用飞机设计与研究, 2015, (3): 60
4 Zhang B B, Xu W C, Zhu Q J, et al. Mechanically robust superhydrophobic porous anodized AA5083 for marine corrosion protection[J]. Corros. Sci., 2019, 158: 108083
doi: 10.1016/j.corsci.2019.06.031
5 Chen Y L, Wu X J, Zhang Y, et al. Corrosion behavior and DFR degradation law of 2024-T3 aluminium alloy in different surface state[J]. Equip. Environ. Eng., 2020, 17(6): 44
5 陈跃良, 吴省均, 张 勇 等. 不同表面状态2024-T3铝合金腐蚀行为及DFR退化规律[J]. 装备环境工程, 2020, 17(6): 44
6 Sun S K, Sun Z H, Tang Z H, et al. Corrosion control and protection technology of carrier-borne aircraft[J]. Equip. Environ. Eng., 2017, 14(3): 18
6 孙盛坤, 孙志华, 汤智慧 等. 舰载飞机腐蚀控制与防护技术[J]. 装备环境工程, 2017, 14(3): 18
7 Xia D H, Mao Y C, Zhu Y, et al. A novel approach used to study the corrosion susceptibility of metallic materials at a dynamic seawater/air interface[J]. Corros. Commun., 2022, 6: 62
doi: 10.1016/j.corcom.2022.03.001
8 Melchers R E, Jeffrey R. Corrosion of long vertical steel strips in the marine tidal zone and implications for ALWC[J]. Corros. Sci., 2012, 65: 26
doi: 10.1016/j.corsci.2012.07.025
9 Li X J, Gui F, Cong H B, et al. Examination of mechanisms for liquid-air-interface corrosion of steel in high level radioactive waste simulants[J]. J. Electrochem. Soc., 2013, 160: C521
doi: 10.1149/2.029311jes
10 Li S X, Teague M T, Doll G L, et al. Interfacial corrosion of copper in concentrated chloride solution and the formation of copper hydroxychloride[J]. Corros. Sci., 2018, 141: 243
doi: 10.1016/j.corsci.2018.06.037
11 Huang G Q. Corrosion of alumimium alloys in marine environments (Ⅰ)—A summary of 16 year exposure testing in seawater tide zone[J]. Corros. Prot., 2002, 23: 18
11 黄桂桥. 铝合金在海洋环境中的腐蚀研究(Ⅰ)—海水潮汐区16年暴露试验总结[J]. 腐蚀与防护, 2002, 23: 18
12 Huang G Q. Corrosion of aluminium alloys in marine environment (Ⅱ)—A summary of 16 years exposure testing in seawater full immersion zone[J]. Corros. Prot., 2002, 23: 47
12 黄桂桥. 铝合金在海洋环境中的腐蚀研究(Ⅱ)—海水全浸区16年暴露试验总结[J]. 腐蚀与防护, 2002, 23: 47
13 Huang G Q. Corrosion of aluminium alloys in marine environment (III)—A summary of 16 years exposure testing in splash zone[J]. Corros. Prot., 2003, 24: 47
13 黄桂桥. 铝合金在海洋环境中的腐蚀研究(III)—海水飞溅区16年暴露试验总结[J]. 腐蚀与防护, 2003, 24: 47
14 Jeffrey R, Melchers R E. Corrosion of vertical mild steel strips in seawater[J]. Corros. Sci., 2009, 51: 2291
doi: 10.1016/j.corsci.2009.06.020
15 Zhao L, Mu X, Dong J H, et al. Study on the galvanic current of corrosion behavior for AH32 long-scale specimen in simulated tidal zone[J]. Acta Metall. Sin., 2017, 53: 1445
15 赵 林, 穆 鑫, 董俊华 等. AH32长尺试样在模拟海洋潮差区腐蚀行为的电偶电流研究[J]. 金属学报, 2017, 53: 1445
16 Yu X Y, Xu Y Z, Zhu Y S, et al. Water-line corrosion behavior measured by electrical resistance method and multi-electrode technique[J]. Corros. Prot., 2021, 42(10): 13
16 余晓毅, 徐云泽, 朱烨森 等. 基于电阻-多电极联合测量的水线腐蚀行为[J]. 腐蚀与防护, 2021, 42(10): 13
17 Chang A L, Song S Z. A preliminary on corrosion monitoring and detecting of metal structure in simulated sea splash zone[J]. J. Chin. Soc. Corros. Prot., 2012, 32: 247
17 常安乐, 宋诗哲. 模拟海洋环境浪花飞溅区的金属构筑物腐蚀监检测[J]. 中国腐蚀与防护学报, 2012, 32: 247
18 Liao H Q, Watson W, Dizon A, et al. Physical properties obtained from measurement model analysis of impedance measurements[J]. Electrochim. Acta, 2020, 354: 136747
doi: 10.1016/j.electacta.2020.136747
19 Chen Y M, Nguyen A S, Orazem M E, et al. Identification of resistivity distributions in dielectric layers by measurement model analysis of impedance spectroscopy[J]. Electrochim. Acta, 2016, 219: 312
doi: 10.1016/j.electacta.2016.09.136
20 Ma C, Wang Z Q, Behnamian Y, et al. Measuring atmospheric corrosion with electrochemical noise: A review of contemporary methods[J]. Measurement, 2019, 138: 54
doi: 10.1016/j.measurement.2019.02.027
21 Xia D H, Behnamian Y. Electrochemical noise: a review of experimental setup, instrumentation and DC removal[J]. Russ. J. Electrochem., 2015, 51: 593
doi: 10.1134/S1023193515070071
22 Xia D H, Song S Z, Behnamian Y, et al. Review-Electrochemical noise applied in corrosion science: Theoretical and mathematical models towards quantitative analysis[J]. J. Electrochem. Soc., 2020, 167: 081507
23 Xia D H, Song S Z, Behnamian Y. Detection of corrosion degradation using electrochemical noise (EN): Review of signal processing methods for identifying corrosion forms[J]. Corros. Eng. Sci. Technol., 2016, 51: 527
24 Chakri S, Frateur I, Orazem M E, et al. Improved EIS analysis of the electrochemical behaviour of carbon steel in alkaline solution[J]. Electrochim. Acta, 2017, 246: 924
doi: 10.1016/j.electacta.2017.06.096
25 Wei Y J, Xia D H, Song S Z. Detection of SCC of 304 NG stainless steel in an acidic NaCl solution using electrochemical noise based on chaos and wavelet analysis[J]. Russ. J. Electrochem., 2016, 52: 560
doi: 10.1134/S1023193516060124
26 Ji Y Y, Xu Y Z, Zhang B B, et al. Review of micro-scale and atomic-scale corrosion mechanisms of second phases in aluminum alloys[J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 3205
doi: 10.1016/S1003-6326(21)65727-8
27 Zhu Y K, Sun K, Garves J, et al. Micro- and nano-scale intermetallic phases in AA2070-T8 and their corrosion behavior[J]. Electrochim. Acta, 2019, 319: 634
doi: 10.1016/j.electacta.2019.05.028
28 Zhu Y K, Frankel G S. Effect of major intermetallic particles on localized corrosion of AA2060-T8[J]. Corrosion, 2019, 75: 29
doi: 10.5006/2867
29 Li Y, Li K, Li L D, et al. Corrosion behavior of 3A12, 5052, 6063 aluminum alloys in coastal atmosphere[J]. Corros. Prot., 2019, 40: 490
29 李 一, 李 坤, 李立东 等. 3A12、5052、6063铝合金在沿海大气环境中的腐蚀行为[J]. 腐蚀与防护, 2019, 40: 490
30 Szklarska-Smialowska Z. Pitting corrosion of aluminum[J]. Corros. Sci., 1999, 41: 1743
doi: 10.1016/S0010-938X(99)00012-8
31 Hagyard T, Williams J R. Potential of aluminium in aqueous chloride solutions. Part 1[J]. Trans. Faraday Soc., 1961, 57: 2288
doi: 10.1039/tf9615702288
32 Yu Y J, Li Y. New insight into the negative difference effect in aluminium corrosion using in-situ electrochemical ICP-OES[J]. Corros. Sci., 2020, 168: 108568
doi: 10.1016/j.corsci.2020.108568
33 Xing P, Lu L, Li X G. Oxygen-concentration cell induced corrosion of E690 steel for ocean platform[J]. Chin. J. Mater. Res., 2016, 30: 241
doi: 10.11901/1005.3093.2015.507
33 邢 佩, 卢 琳, 李晓刚. 海洋用高强钢E690氧浓差腐蚀行为研究[J]. 材料研究学报, 2016, 30: 241
[1] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[4] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[5] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[6] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[7] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[8] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[9] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[10] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[11] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[12] 王冠杰, 李开旗, 彭力宇, 张壹铭, 周健, 孙志梅. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58(1): 75-88.
[13] 赵婉辰, 郑晨, 肖斌, 刘行, 刘璐, 余童昕, 刘艳洁, 董自强, 刘轶, 周策, 吴洪盛, 路宝坤. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化[J]. 金属学报, 2021, 57(6): 797-810.
[14] 孙佳孝, 杨可, 王秋雨, 季珊林, 包晔峰, 潘杰. 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57(5): 665-674.
[15] 陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出强化模型[J]. 金属学报, 2021, 57(3): 353-362.