|
|
2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制 |
夏大海( ), 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬( ) |
天津大学 材料科学与工程学院 天津市材料复合与功能化重点实验室 天津 300350 |
|
Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface |
XIA Dahai( ), JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin( ) |
Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China |
引用本文:
夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
Dahai XIA,
Yuanyuan JI,
Yingchang MAO,
Chengman DENG,
Yu ZHU,
Wenbin HU.
Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. Acta Metall Sin, 2023, 59(2): 297-308.
1 |
Deng Y L, Zhang X M. Development of aluminium and aluminium alloy[J]. Chin. J. Nonferrous Met., 2019, 29: 2115
|
1 |
邓运来, 张新明. 铝及铝合金材料进展[J]. 中国有色金属学报, 2019, 29: 2115
|
2 |
Huang Y B, Zhou K K, Ba G Z, et al. The corrosion status of amphibious vehicles along the coast and integrated corrosion control technology[J]. Acta Armamentarii, 2016, 37: 1291
|
2 |
黄燕滨, 周科可, 巴国召 等. 沿海两栖车辆腐蚀现状及腐蚀综合控制技术[J]. 兵工学报, 2016, 37: 1291
doi: 10.3969/j.issn.1000-1093.2016.07.018
|
3 |
Jiang W, Wang J E. Analysis of choosing aluminum on mainstructure of amphibious aircraft[J]. Civ. Aircr. Des. Res., 2015, (3): 60
|
3 |
江 武, 王金娥. 某型水陆两栖飞机主结构铝合金材料选用分析[J]. 民用飞机设计与研究, 2015, (3): 60
|
4 |
Zhang B B, Xu W C, Zhu Q J, et al. Mechanically robust superhydrophobic porous anodized AA5083 for marine corrosion protection[J]. Corros. Sci., 2019, 158: 108083
doi: 10.1016/j.corsci.2019.06.031
|
5 |
Chen Y L, Wu X J, Zhang Y, et al. Corrosion behavior and DFR degradation law of 2024-T3 aluminium alloy in different surface state[J]. Equip. Environ. Eng., 2020, 17(6): 44
|
5 |
陈跃良, 吴省均, 张 勇 等. 不同表面状态2024-T3铝合金腐蚀行为及DFR退化规律[J]. 装备环境工程, 2020, 17(6): 44
|
6 |
Sun S K, Sun Z H, Tang Z H, et al. Corrosion control and protection technology of carrier-borne aircraft[J]. Equip. Environ. Eng., 2017, 14(3): 18
|
6 |
孙盛坤, 孙志华, 汤智慧 等. 舰载飞机腐蚀控制与防护技术[J]. 装备环境工程, 2017, 14(3): 18
|
7 |
Xia D H, Mao Y C, Zhu Y, et al. A novel approach used to study the corrosion susceptibility of metallic materials at a dynamic seawater/air interface[J]. Corros. Commun., 2022, 6: 62
doi: 10.1016/j.corcom.2022.03.001
|
8 |
Melchers R E, Jeffrey R. Corrosion of long vertical steel strips in the marine tidal zone and implications for ALWC[J]. Corros. Sci., 2012, 65: 26
doi: 10.1016/j.corsci.2012.07.025
|
9 |
Li X J, Gui F, Cong H B, et al. Examination of mechanisms for liquid-air-interface corrosion of steel in high level radioactive waste simulants[J]. J. Electrochem. Soc., 2013, 160: C521
doi: 10.1149/2.029311jes
|
10 |
Li S X, Teague M T, Doll G L, et al. Interfacial corrosion of copper in concentrated chloride solution and the formation of copper hydroxychloride[J]. Corros. Sci., 2018, 141: 243
doi: 10.1016/j.corsci.2018.06.037
|
11 |
Huang G Q. Corrosion of alumimium alloys in marine environments (Ⅰ)—A summary of 16 year exposure testing in seawater tide zone[J]. Corros. Prot., 2002, 23: 18
|
11 |
黄桂桥. 铝合金在海洋环境中的腐蚀研究(Ⅰ)—海水潮汐区16年暴露试验总结[J]. 腐蚀与防护, 2002, 23: 18
|
12 |
Huang G Q. Corrosion of aluminium alloys in marine environment (Ⅱ)—A summary of 16 years exposure testing in seawater full immersion zone[J]. Corros. Prot., 2002, 23: 47
|
12 |
黄桂桥. 铝合金在海洋环境中的腐蚀研究(Ⅱ)—海水全浸区16年暴露试验总结[J]. 腐蚀与防护, 2002, 23: 47
|
13 |
Huang G Q. Corrosion of aluminium alloys in marine environment (III)—A summary of 16 years exposure testing in splash zone[J]. Corros. Prot., 2003, 24: 47
|
13 |
黄桂桥. 铝合金在海洋环境中的腐蚀研究(III)—海水飞溅区16年暴露试验总结[J]. 腐蚀与防护, 2003, 24: 47
|
14 |
Jeffrey R, Melchers R E. Corrosion of vertical mild steel strips in seawater[J]. Corros. Sci., 2009, 51: 2291
doi: 10.1016/j.corsci.2009.06.020
|
15 |
Zhao L, Mu X, Dong J H, et al. Study on the galvanic current of corrosion behavior for AH32 long-scale specimen in simulated tidal zone[J]. Acta Metall. Sin., 2017, 53: 1445
|
15 |
赵 林, 穆 鑫, 董俊华 等. AH32长尺试样在模拟海洋潮差区腐蚀行为的电偶电流研究[J]. 金属学报, 2017, 53: 1445
|
16 |
Yu X Y, Xu Y Z, Zhu Y S, et al. Water-line corrosion behavior measured by electrical resistance method and multi-electrode technique[J]. Corros. Prot., 2021, 42(10): 13
|
16 |
余晓毅, 徐云泽, 朱烨森 等. 基于电阻-多电极联合测量的水线腐蚀行为[J]. 腐蚀与防护, 2021, 42(10): 13
|
17 |
Chang A L, Song S Z. A preliminary on corrosion monitoring and detecting of metal structure in simulated sea splash zone[J]. J. Chin. Soc. Corros. Prot., 2012, 32: 247
|
17 |
常安乐, 宋诗哲. 模拟海洋环境浪花飞溅区的金属构筑物腐蚀监检测[J]. 中国腐蚀与防护学报, 2012, 32: 247
|
18 |
Liao H Q, Watson W, Dizon A, et al. Physical properties obtained from measurement model analysis of impedance measurements[J]. Electrochim. Acta, 2020, 354: 136747
doi: 10.1016/j.electacta.2020.136747
|
19 |
Chen Y M, Nguyen A S, Orazem M E, et al. Identification of resistivity distributions in dielectric layers by measurement model analysis of impedance spectroscopy[J]. Electrochim. Acta, 2016, 219: 312
doi: 10.1016/j.electacta.2016.09.136
|
20 |
Ma C, Wang Z Q, Behnamian Y, et al. Measuring atmospheric corrosion with electrochemical noise: A review of contemporary methods[J]. Measurement, 2019, 138: 54
doi: 10.1016/j.measurement.2019.02.027
|
21 |
Xia D H, Behnamian Y. Electrochemical noise: a review of experimental setup, instrumentation and DC removal[J]. Russ. J. Electrochem., 2015, 51: 593
doi: 10.1134/S1023193515070071
|
22 |
Xia D H, Song S Z, Behnamian Y, et al. Review-Electrochemical noise applied in corrosion science: Theoretical and mathematical models towards quantitative analysis[J]. J. Electrochem. Soc., 2020, 167: 081507
|
23 |
Xia D H, Song S Z, Behnamian Y. Detection of corrosion degradation using electrochemical noise (EN): Review of signal processing methods for identifying corrosion forms[J]. Corros. Eng. Sci. Technol., 2016, 51: 527
|
24 |
Chakri S, Frateur I, Orazem M E, et al. Improved EIS analysis of the electrochemical behaviour of carbon steel in alkaline solution[J]. Electrochim. Acta, 2017, 246: 924
doi: 10.1016/j.electacta.2017.06.096
|
25 |
Wei Y J, Xia D H, Song S Z. Detection of SCC of 304 NG stainless steel in an acidic NaCl solution using electrochemical noise based on chaos and wavelet analysis[J]. Russ. J. Electrochem., 2016, 52: 560
doi: 10.1134/S1023193516060124
|
26 |
Ji Y Y, Xu Y Z, Zhang B B, et al. Review of micro-scale and atomic-scale corrosion mechanisms of second phases in aluminum alloys[J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 3205
doi: 10.1016/S1003-6326(21)65727-8
|
27 |
Zhu Y K, Sun K, Garves J, et al. Micro- and nano-scale intermetallic phases in AA2070-T8 and their corrosion behavior[J]. Electrochim. Acta, 2019, 319: 634
doi: 10.1016/j.electacta.2019.05.028
|
28 |
Zhu Y K, Frankel G S. Effect of major intermetallic particles on localized corrosion of AA2060-T8[J]. Corrosion, 2019, 75: 29
doi: 10.5006/2867
|
29 |
Li Y, Li K, Li L D, et al. Corrosion behavior of 3A12, 5052, 6063 aluminum alloys in coastal atmosphere[J]. Corros. Prot., 2019, 40: 490
|
29 |
李 一, 李 坤, 李立东 等. 3A12、5052、6063铝合金在沿海大气环境中的腐蚀行为[J]. 腐蚀与防护, 2019, 40: 490
|
30 |
Szklarska-Smialowska Z. Pitting corrosion of aluminum[J]. Corros. Sci., 1999, 41: 1743
doi: 10.1016/S0010-938X(99)00012-8
|
31 |
Hagyard T, Williams J R. Potential of aluminium in aqueous chloride solutions. Part 1[J]. Trans. Faraday Soc., 1961, 57: 2288
doi: 10.1039/tf9615702288
|
32 |
Yu Y J, Li Y. New insight into the negative difference effect in aluminium corrosion using in-situ electrochemical ICP-OES[J]. Corros. Sci., 2020, 168: 108568
doi: 10.1016/j.corsci.2020.108568
|
33 |
Xing P, Lu L, Li X G. Oxygen-concentration cell induced corrosion of E690 steel for ocean platform[J]. Chin. J. Mater. Res., 2016, 30: 241
doi: 10.11901/1005.3093.2015.507
|
33 |
邢 佩, 卢 琳, 李晓刚. 海洋用高强钢E690氧浓差腐蚀行为研究[J]. 材料研究学报, 2016, 30: 241
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|