Please wait a minute...
金属学报  2020, Vol. 56 Issue (1): 119-128    DOI: 10.11900/0412.1961.2019.00217
  研究论文 本期目录 | 过刊浏览 |
合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响
王力1,董超芳1(),张达威1,孙晓光2,Thee Chowwanonthapunya3,满成4,肖葵1,李晓刚1()
1. 北京科技大学腐蚀与防护中心 北京 100083
2. 中车青岛四方机车车辆股份有限公司 青岛 266111
3. Faculty of International Maritime Studies, Kasetsart University, Chonburi 20230, Thailand
4. 中国海洋大学材料科学与工程学院 青岛 266100
Effect of Alloying Elements on Initial Corrosion Behavior of Aluminum Alloy in Bangkok, Thailand
WANG Li1,DONG Chaofang1(),ZHANG Dawei1,SUN Xiaoguang2,Chowwanonthapunya Thee3,MAN Cheng4,XIAO Kui1,LI Xiaogang1()
1. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
2. CRRC Qingdao Sifang Co. , Ltd. , Qingdao 266111, China
3. Faculty of International Maritime Studies, Kasetsart University, Chonburi 20230, Thailand
4. School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
全文: PDF(27368 KB)   HTML
摘要: 

在泰国曼谷地区对5083、6063和7020 3种铝合金进行为期1 a的暴晒实验,采用SEM、电化学实验、XPS和扫描Kelvin探针显微镜(SKPFM)对3种铝合金初期腐蚀形貌及腐蚀机理进行研究。结果表明:6063铝合金中Mg、Si、Fe等合金元素含量较少,腐蚀电位相对较高,约为-0.66 V (vs SCE),腐蚀产物膜较为致密,耐蚀性较好,在泰国曼谷地区的腐蚀速率约为0.7 g/(m2·a)。7020铝合金含有较多Mg、Zn等合金元素,腐蚀电位约为-0.78 V (vs SCE),腐蚀最为严重,腐蚀速率约为3.26 g/(m2·a)。3种铝合金均含有Mn、Si、Fe等合金元素,从而形成Fe-Si-Al或Fe-Si(Mn)-Al第二相,第二相表面电位高于基体225~280 mV,在大气环境中第二相作为阴极相,周围的基体Al优先溶解脱落,成为点蚀坑。

关键词 铝合金泰国曼谷大气腐蚀点蚀    
Abstract

With the rapid development of rail transit, high-speed trains are gradually exported to Southeast Asian countries. Aluminum alloy is widely used as a structural material such as train body and rail beam in high-speed trains, so that it is important to study the corrosion behavior of different aluminum alloy in Southeast Asia. The exposure test was conducted on 5083, 6063 and 7020 aluminum alloys in Bangkok, Thailand for 1 a. SEM, XPS, electrochemical experiment and scanning Kelvin probe force microscopy (SKPFM) were used to study the corrosion morphology and corrosion mechanism of different aluminum alloys. The results showed that the corrosion potential of 6063 aluminum alloys were relatively high, about -0.66 V (vs SCE), and the corrosion morphologies were relatively mild, which was due to less alloy elements such as Mg, Si and Fe in the 6063 aluminum alloys. The corrosion rate of 6063 aluminum alloys in Bangkok, Thailand was about 0.7 g/(m2·a). 7020 aluminum alloy contains more Zn elements, and the corrosion potential was about -0.78 V (vs SCE). The corrosion rate was the highest, about 3.26 g/(m2·a). The second phase of Fe-Si-Al or Fe-Si(Mn)-Al formed in the microstructure of the three aluminum alloys. The surface potential of the second phase was higher than that of the matrix, about 225~280 mV. In the atmospheric environment, the second phase acted as the cathode phase, and the surrounding matrix Al dissolved preferentially. The second phase fell off and formed a pit.

Key wordsaluminum alloy    Bangkok Thailand    atmospheric corrosion    pitting
收稿日期: 2019-07-03     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划 项目(2017YFB0702300);国家自然科学基金项目(51871028);国家材料环境腐蚀平台项目(2005DKA10400)
通讯作者: 董超芳,李晓刚     E-mail: cfdong@ustb.edu.cn;lixiaogang99@263.net
Corresponding author: Chaofang DONG,Xiaogang LI     E-mail: cfdong@ustb.edu.cn;lixiaogang99@263.net
作者简介: 王 力,男,1992年生,博士生

引用本文:

王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
Li WANG, Chaofang DONG, Dawei ZHANG, Xiaoguang SUN, Thee Chowwanonthapunya, Cheng MAN, Kui XIAO, Xiaogang LI. Effect of Alloying Elements on Initial Corrosion Behavior of Aluminum Alloy in Bangkok, Thailand. Acta Metall Sin, 2020, 56(1): 119-128.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00217      或      https://www.ams.org.cn/CN/Y2020/V56/I1/119

Al alloySiMnCrCuTiFeMgZnAl
50830.0440.600.0770.0300.0150.224.220.0086Bal.
60630.600.180.120.0140.0380.150.650.01Bal.
7020<0.100.450.160.100.0470.0961.144.58Bal.
表1  实验材料的化学成分 (mass fraction / %)
图1  5083、6063和7020铝合金的EBSD像
图2  5083、6063和7020 3种铝合金在曼谷暴晒1 a后的宏观和微观腐蚀形貌
图3  5083、6063和7020 3种铝合金曼谷暴晒1 a后的微观表面和截面SEM像
图4  在曼谷暴晒1 a后3种铝合金在0.1 mol/L NaCl中的极化曲线
图5  曼谷暴晒1 a后5083、6063和7020铝合金在0.1 mol/L NaCl中的电化学阻抗谱(EIS)
图6  EIS结果拟合电路图

Al alloy

Re

Ω·cm2

R1

Ω·cm2

Q1

Ω-1·cm-2·sn1

R2

Ω·cm2

Q2

Ω-1·cm-2·sn2

508325.312.249×1067.041×10-665.602.633×10-6
606366.084.077×1066.094×10-713.697.406×10-6
702065.968.233×1056.094×10-654.697.573×10-6
表2  EIS拟合电路各元件参数
图7  5083、6063和7020 铝合金腐蚀产物XPS分析
图8  5083、6063和7020铝合金点蚀形貌及面扫描结果
图9  Fe-Si(Mn)-Al第二相的SEM像、表面EDS面扫描及SKPFM结果
图10  Fe-Si-Al第二相的SEM像、表面EDS面扫描及SKPFM结果
[1] Huang B Y, Li C G, Shi L K, et al. Non-Ferrous Metal Materials Manual (I) [M]. Beijing: Chemical Industry Press, 2009: 109
[1] (黄伯云, 李成功, 石开力等. 有色金属材料手册(上) [M]. 北京: 化学工业出版社, 2009: 109)
[2] Yasakau K A, Zheludkevich M L, Ferreira M G S. Intermetallic Matrix Composites: Properties and Applications [M]. Sawston, Cambridge: Woodhead Publishing, 2018: 425
[3] Liu Y J, Wang Z Y, Ke W. Corrosion behavior of 2024-T3 aluminum alloy in simulated marine atmospheric environment [J]. Chin. J. Nonferrous Met., 2013, 23: 1208
[3] (刘艳洁, 王振尧, 柯 伟. 2024-T3铝合金在模拟海洋大气环境中的腐蚀行为 [J]. 中国有色金属学报, 2013, 23: 1208)
[4] Xiao Y D, Wang G Y, Li X G. Corrosion behavior of atmospheric environment and corrosion feature of materials in our western area [J]. J. Chin. Soc. Corros. Prot., 2003, 23: 248
[4] (萧以德, 王光雍, 李晓刚. 我国西部地区大气环境腐蚀性及材料腐蚀特征 [J]. 中国腐蚀与防护学报, 2003, 23: 248)
[5] Wang L, Guo C Y, Xiao K, et al. Corrosion behavior of carbon steels Q235 and Q450 in dry hot atmosphere at Turpan district for four years [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 431
[5] (王 力, 郭春云, 肖葵等. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2018, 38: 431)
[6] Grimm M, Lohmüller A, Singer R F, et al. Influence of the microstructure on the corrosion behaviour of cast Mg-Al alloys [J]. Corros. Sci., 2019, 155: 195
[7] van Beek H J, Mittemeijer E J. Amorphous and crystalline oxides on aluminium [J]. Thin Solid Films, 1984, 122: 131
[8] Gao M, Sun Z H, Liu M, et al. Atmospheric corrosion behavior of 7B04 aluminum alloy in the presence of NaCl and SO2 [J]. Environ. Technol., 2016, 34(5): 9
[8] (高 蒙, 孙志华, 刘 明等. 7B04铝合金在NaCl沉积与SO2环境下的大气腐蚀行为 [J]. 环境技术, 2016, 34(5): 9)
[9] Zhou H R, Li X G, Dong C F. Review of atmospheric corrosion behavior and mechanism of aluminum alloys and it's anodic film [J]. Equip. Environ. Eng., 2006, 3(1): 1
[9] (周和荣, 李晓刚, 董超芳. 铝合金及其氧化膜大气腐蚀行为与机理研究进展 [J]. 装备环境工程, 2006, 3(1): 1)
[10] Fratila-Apachitei L E, Terryn H, Skeldon P, et al. In?uence of substrate microstructure on the growth of anodic oxide layers [J]. Electrochim. Acta, 2004, 49: 1127
[11] Wang B B, Wang Z Y, Cao G W, et al. Localized corrosion of aluminum alloy 2024 exposed to salt lake atmospheric environment in western China [J]. Acta Metall. Sin., 2014, 50: 49
[11] (王彬彬, 王振尧, 曹公望等. 2024铝合金在中国西部盐湖大气环境中的局部腐蚀行为 [J]. 金属学报, 2014, 50: 49)
[12] Wei X, Dong C F, Chen Z H, et al. A DFT study of the adsorption of O2 and H2O on Al(111) surfaces [J]. RSC Adv., 2016, 6: 56303
[13] Man C, Dong C F, Xiao K, et al. The combined effect of chemical and structural factors on pitting corrosion induced by MnS-(Cr, Mn, Al)O duplex inclusions [J]. Corrosion, 2018, 74: 312
[14] Tanem B S, Svenningsen G, M?rdalen J. Relations between sample preparation and SKPFM Volta potential maps on an EN AW-6005 aluminium alloy [J]. Corros. Sci., 2005, 47: 1506
[15] Zheng C B, Li C L, Yi G, et al. Corrosion behavior of high-strength aluminum alloys 6061 and 7075 in simulated marine atmosphere [J]. Mater. Prot., 2014, 47(6): 38
[15] (郑传波, 李春岭, 益 帼等. 高强铝合金6061和7075在模拟海洋大气环境中的腐蚀行为 [J]. 材料保护, 2014, 47(6): 38)
[16] Suo X N, Guo C, Kong D C, et al. Corrosion behaviour of TiN and CrN coatings produced by magnetron sputtering process on aluminium alloy [J]. Int. J. Electrochem. Sci., 2019, 14: 826
[17] Chen M A, Ou Y C, Fu Y H, et al. Effect of friction stirred Al-Fe-Si particles in 6061 aluminum alloy on structure and corrosion performance of MAO coating [J]. Surf. Coat. Technol., 2016, 304: 85
[18] Man C, Dong C F, Cui Z Y, et al. A comparative study of primary and secondary passive films formed on AM355 stainless steel in 0.1 M NaOH [J]. Appl. Surf. Sci., 2018, 427: 763
[19] Luo H, Yu Q, Dong C F, et al. Influence of the aging time on the microstructure and electrochemical behaviour of a 15-5PH ultra-high strength stainless steel [J]. Corros. Sci., 2018, 139: 185
[20] Chung I C, Chung C K, Su Y K. Effect of current density and concentration on microstructure and corrosion behavior of 6061 Al alloy in sulfuric acid [J]. Surf. Coat. Technol., 2017, 313: 299
[21] Nejadseyfi O, Shokuhfar A, Dabiri A, et al. Combining equal-channel angular pressing and heat treatment to obtain enhanced corrosion resistance in 6061 aluminum alloy [J]. J. Alloys Compd., 2015, 648: 912
[22] de Miera M S, Curioni M, Skeldon P, et al. The behaviour of second phase particles during anodizing of aluminium alloys [J]. Corros. Sci., 2010, 52: 2489
[23] Huang L P, Chen K H, Li S. Influence of grain-boundary pre-precipitation and corrosion characteristics of inter-granular phases on corrosion behaviors of an Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng., 2012, B177: 862
[24] Esfahani Z, Rahimi E, Sarvghad M, et al. Correlation between the histogram and power spectral density analysis of AFM and SKPFM images in an AA7023/AA5083 FSW joint [J]. J. Alloys Compd., 2018, 744: 174
[25] Ornek C, Engelberg D L. SKPFM measured Volta potential correlated with strain localisation in microstructure to understand corrosion susceptibility of cold-rolled grade 2205 duplex stainless steel [J]. Corros. Sci., 2015, 99: 164
[1] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[2] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[3] 陈星晨, 王杰, 陈德任, 钟舜聪, 王向峰. Na对于Al早期大气腐蚀的影响[J]. 金属学报, 2019, 55(4): 529-536.
[4] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[5] 田银宝, 申俊琦, 胡绳荪, 勾健. 丝材+电弧增材制造钛/铝异种金属反应层的研究[J]. 金属学报, 2019, 55(11): 1407-1416.
[6] 冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.
[7] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[8] 邵盈恺, 王玉玺, 杨志斌, 史春元. 基于焊缝熔深优化的7075铝合金等离子-MIG复合焊接热裂纹敏感性[J]. 金属学报, 2018, 54(4): 547-556.
[9] 刘政, 陈志平, 陈涛. 坩埚尺寸和电磁频率对半固态A356铝合金浆料流动的影响[J]. 金属学报, 2018, 54(3): 435-442.
[10] 于菁, 王继杰, 倪丁瑞, 肖伯律, 马宗义, 潘兴龙. 电子束熔丝沉积快速成形2319铝合金的微观组织与力学性能[J]. 金属学报, 2018, 54(12): 1725-1734.
[11] 张玉圣, 王友彬, 李纯民, 周秉涛, 程珂珂, 韦悦周. 6061铝合金表面ZnAl-LDHs层的制备及其耐腐蚀性能[J]. 金属学报, 2018, 54(10): 1417-1427.
[12] 郭明晓, 潘晨, 王振尧, 韩薇. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究[J]. 金属学报, 2018, 54(1): 65-75.
[13] 林艳丽, 何祝斌, 初冠南, 闫永达. 利用管状试样测试各向异性材料双向应力状态力学性能的新方法[J]. 金属学报, 2017, 53(9): 1101-1109.
[14] 侯陇刚, 刘明荔, 王新东, 庄林忠, 张济山. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53(9): 1075-1090.
[15] 梅益, 孙全龙, 喻丽华, 王传荣, 肖华强. 基于GA-ELM的铝合金压铸件晶粒尺寸预测[J]. 金属学报, 2017, 53(9): 1125-1132.