Please wait a minute...
金属学报  2020, Vol. 56 Issue (9): 1247-1254    DOI: 10.11900/0412.1961.2020.00013
  本期目录 | 过刊浏览 |
碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为
刘雨薇1,2, 赵洪涛1, 王振尧1()
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
Initial Corrosion Behavior of Carbon Steel and Weathering Steel in Nansha Marine Atmosphere
LIU Yuwei1,2, ZHAO Hongtao1, WANG Zhenyao1()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(9): 1247-1254.
Yuwei LIU, Hongtao ZHAO, Zhenyao WANG. Initial Corrosion Behavior of Carbon Steel and Weathering Steel in Nansha Marine Atmosphere[J]. Acta Metall Sin, 2020, 56(9): 1247-1254.

全文: PDF(2389 KB)   HTML
摘要: 

采用腐蚀失重法、宏观形貌观察法、SEM、XRD、白光干涉及拉伸实验等分析手段对碳钢Q235和耐候钢Q450NQR1在南沙大气环境下的初期腐蚀行为进行了研究。结果表明,Q235和Q450NQR1在南沙大气环境中的初期腐蚀比万宁及西沙等海洋大气环境中的腐蚀严重,2种钢的朝天面都比朝地面腐蚀严重,朝地面的锈层更容易脱落。暴晒2个月时,Q235和Q450NQR1的腐蚀失厚相近。暴晒5个月时,Q235的腐蚀失厚明显高于Q450NQR1的腐蚀失厚。2种钢在暴晒2个月时,朝天面和朝地面的腐蚀产物都主要为γ-FeOOH、α-FeOOH和Fe3O4;而暴晒5个月时,朝天面产物中出现了β-FeOOH,而朝地面β-FeOOH极少。朝天面的产物中Fe3O4相对含量少于朝地面,γ-FeOOH的相对含量多于朝地面。

关键词 南沙海洋大气碳钢大气腐蚀机制腐蚀产物    
Abstract

Along with the increasing pace of marine resource development and strategic deployment of China, the infrastructure materials and deployed aircraft were facing severe salt fog corrosion during the construction process of the South China Sea. Materials damage in this environment is much more serious than that in other marine atmospheric environment. Owing to its location near the equator and the direct impact of solar radiation, Nansha marine atmosphere is a representative and typical climate with high temperature, high humidity, high salinity and high radiation. However, there has been lack of material corrosion data and relevant fundamental research until now. Carbon steel is usually one of the most widely used infrastructure materials and reference materials, and its corrosion data exposed to Nansha Islands marine atmosphere is much more important. These corrosion data can not only provide important basis for environmental corrosivity category, but also provide reference for indoor accelerated corrosion test. Therefore, in order to obtain useful information on selected construction materials, adopting the appropriate corrosion protection methods, and predicting the life of metallic structures under service, the exposure test was conducted on carbon steel Q235 and weathering steel Q450NQR1 in Nansha Islands for 2 and 5 months. Thickness loss analysis, macroscopic observation, SEM, XRD, optical profiler and tensile tests were conducted to study the initial corrosion behavior on both sides of Q235 and Q450NQR1 in Nansha marine atmosphere. The results showed that the initial corrosion behavior of both steels at this site was more serious than those at most areas, such as Wanning and Xisha Islands, and the corrosion of skyward of both steels was more serious than that of field-ward. The rust layer formed on field-ward was easier to fall off. After exposure for 2 months, the thickness loss of Q235 was the same as that of Q450NQR1, and corrosion products on both sides were mainly composed of γ-FeOOH, α-FeOOH and Fe3O4; while after 5 months' exposure, the thickness loss of Q235 was much larger than that of Q450NQR1, and corrosion products were mainly composed of γ-FeOOH, α-FeOOH, Fe3O4 and β-FeOOH. The relative composition of β-FeOOH and γ-FeOOH was fewer on the field-ward, and the relative composition of Fe3O4 was fewer on the skyward.

Key wordsNansha marine atmosphere    carbon steel    atmospheric corrosion mechanism    corrosion product
收稿日期: 2020-01-10     
ZTFLH:  TG172.3  
基金资助:国家自然科学基金项目(51671197);中国科学院战略性先导科技专项(A类)项目(XDA13040502)
作者简介: 刘雨薇,女,1990年生,博士生
SteelCSiMnPSCrNiCuFe
Q2350.220.080.100.0150.003---Bal.
Q450NQR10.080.310.410.0730.0060.470.150.29Bal.
表1  Q235和Q450NQR1的化学成分 (mass fraction / %)
图1  力学拉伸试样示意图
图2  暴晒地点
图3  碳钢Q235和耐候钢Q450NQR1的腐蚀深度随暴晒时间的变化
图4  Q235和Q450NQR1腐蚀产物组成(a, c) skyward side;(b, d) field-ward side
图5  Q235和Q450NQR1腐蚀产物的宏观形貌Color online(a, e) Q235-2 months;(b, f) Q450NQR1-2 months;(c, g) Q235-5 months;(d, h) Q450NQR1-5 months
图6  Q235和Q450NQR1腐蚀产物的截面形貌(a, e) Q235-2 months;(b, f) Q450NQR1-2 months;(c, g) Q235-5 months;(d, h) Q450NQR1-5 months
图7  Q235和Q450NQR1去除腐蚀产物后表面三维形貌Color online(a, e) Q235-2 months;(b, f) Q450NQR1-2 months;(c, g) Q235-5 months;(d, h) Q450NQR1-5 months
SurfaceQ235Q450NQR1
2 months5 months2 months5 months
Skyward971512396870916805
Field-ward766310013751612462
表2  Q235和Q450NQR1的表面粗糙度 (nm)
图8  Q235碳钢和Q450NQR1耐候钢的应力-应变曲线
[1] Hou W, Liang C. Eight-year atmospheric corrosion exposure of steels in China [J]. Corrosion, 1999, 55: 65
[2] Oh S J, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine, rural and industrial environments [J]. Corros. Sci., 1999, 41: 1687
[3] Townsend H E. Effects of alloying elements on the corrosion of steel in industrial atmospheres [J]. Corrosion, 2001, 57: 497
[4] Zhang Q C, Wu J S, Wang J J, et al. Corrosion behavior of weathering steel in marine atmosphere [J]. Mater. Chem. Phys., 2002, 77: 603
[5] Surnam B Y R, Oleti C V. Atmospheric corrosion in Mauritius [J]. Corros. Eng. Sci. Technol., 2012, 47: 446
[6] Morcillo M, Chico B, Mariaca L, et al. Salinity in marine atmospheric corrosion: Its dependence on the wind regime existing in the site [J]. Corros. Sci., 2000, 42: 91
[7] de la Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel [J]. Corros. Sci., 2011, 53: 604
[8] de Meybaum B R, Ayllon E S. Characterization of atmospheric corrosion products on weathering steels [J]. Corrosion, 1980, 36: 345
[9] Almeida E, Morcillo M, Rosales B, et al. Atmospheric corrosion of mild steel. Part I - Rural and urban atmospheres [J]. Mater. Corros., 2000, 51: 859
[10] Han W, Pan C, Wang Z Y, et al. Initial atmospheric corrosion of carbon steel in industrial environment [J]. J. Mater. Eng. Perform., 2015, 24: 864
[11] Morcillo M, Chico B, de la Fuente D, et al. Looking back on contributions in the field of atmospheric corrosion offered by the MICAT ibero-american testing network [J]. Int. J. Corros., 2012, 2012: 824365
[12] Ericsson R. The influence of sodium chloride on the atmospheric corrosion of steel [J]. Mater. Corros., 1978, 29: 400
[13] Perez F C. Atmospheric corrosion of steel in a humid tropical climate—Influence of pollution, humidity, temperature, solar radiation and rainfall [J]. Corrosion, 1984, 40: 170
[14] Morcillo M, Alcántara J, Díaz I, et al. Marine atmospheric corrosion of carbon steels [J]. Rev. Metal., 2015, 51: e045.
[15] Feliu S, Morcillo M, Chico B. Effect of distance from sea on atmospheric corrosion rate [J]. Corrosion, 1999, 55: 883
[16] Guerra J C, Castañeda A, Corvo F, et al. Atmospheric corrosion of low carbon steel in a coastal zone of Ecuador: Anomalous behavior of chloride deposition versus distance from the sea [J]. Mater. Corros., 2019, 70: 444
[17] Alcántara J, Chico B, Díaz I, et al. Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel [J]. Corros. Sci., 2015, 97: 74
[18] Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros. Sci., 1994, 36: 283
[19] Li X G, Dong C F, Xiao K, et al. Corrosion/Aging Behavior and Mechanism of Typical Materials in Xisha Marine Atmosphere [M]. Beijing: Science Press, 2014: 37
[19] (李晓刚, 董超芳, 肖 葵等. 西沙海洋大气环境下典型材料腐蚀/老化行为与机理 [M]. 北京: 科学出版社, 2014: 37)
[20] Liu Y W, Zhang J, Wei Y H, et al. Effect of different UV intensity on corrosion behavior of carbon steel exposed to simulated Nansha atmospheric environment [J]. Mater. Chem. Phys., 2019, 237: 121855
[21] Zhang X, Yang S W, Zhang W H, et al. Influence of outer rust layers on corrosion of carbon steel and weathering steel during wet-dry cycles [J]. Corros. Sci., 2014, 82: 165
[22] Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J]. Corros. Sci., 1974, 14: 279
[23] Chen Y Y, Tzeng H J, Wei L I, et al. Corrosion resistance and mechanical properties of low-alloy steels under atmospheric conditions [J]. Corros. Sci., 2005, 47: 1001
[24] Misawa T, Hashimoto K, Shimodaira S. The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature [J]. Corros. Sci., 1974, 14: 131
doi: 10.1016/S0010-938X(74)80051-X
[25] Hao L, Zhang S X, Dong J H, et al. Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments [J]. Corros. Sci., 2011, 53: 4187
[26] Ke W, Dong J H. Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel [J]. Acta Metall. Sin., 2010, 46: 1365
doi: 10.3724/SP.J.1037.2010.01365
[26] (柯 伟, 董俊华. Mn-Cu钢大气腐蚀锈层演化规律及其耐候性的研究 [J]. 金属学报, 2010, 46: 1365)
doi: DOI: 10.3724/SP.J.1037.2010.00489
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
[3] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[4] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[5] 刘雨薇, 顾天真, 王振尧, 汪川, 曹公望. Q235Q450NQR1在中国南沙海洋大气环境中暴晒34个月后的腐蚀行为[J]. 金属学报, 2022, 58(12): 1623-1632.
[6] 郭中傲, 彭治强, 柳前, 侯自兵. 高碳钢连铸坯大区域C元素分布不均匀度[J]. 金属学报, 2021, 57(12): 1595-1606.
[7] 宋学鑫, 黄松鹏, 汪川, 王振尧. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(10): 1355-1365.
[8] 张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.
[9] 刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
[10] 陈星晨, 王杰, 陈德任, 钟舜聪, 王向峰. Na对于Al早期大气腐蚀的影响[J]. 金属学报, 2019, 55(4): 529-536.
[11] 侯自兵, 徐瑞, 常毅, 曹江海, 文光华, 唐萍. 高碳钢连铸方坯拉坯方向偏析C元素分布的时间序列波动特征[J]. 金属学报, 2018, 54(6): 851-858.
[12] 武慧东, 宫本吾郎, 杨志刚, 张弛, 陈浩, 古原忠. Fe-1.5(3.0)%Si-0.4%C合金贝氏体不完全转变现象及伴随的渗碳体析出[J]. 金属学报, 2018, 54(3): 367-376.
[13] 郭明晓, 潘晨, 王振尧, 韩薇. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究[J]. 金属学报, 2018, 54(1): 65-75.
[14] 张慧, 杜艳霞, 李伟, 路民旭. 不同环境介质中X70钢的交流腐蚀行为及腐蚀产物膜层分析[J]. 金属学报, 2017, 53(8): 975-982.
[15] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.