Please wait a minute...
金属学报  2023, Vol. 59 Issue (11): 1487-1498    DOI: 10.11900/0412.1961.2021.00366
  本期目录 | 过刊浏览 |
高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律
宋嘉良1,2, 江紫雪1,2, 易盼3, 陈俊航1,2, 李曌亮1,2, 骆鸿1,2(), 董超芳1,2, 肖葵1,2()
1.北京科技大学 新材料技术研究院 北京 100083
2.北京科技大学 腐蚀与防护中心 北京 100083
3.中国电力科学研究院有限公司 北京 100192
Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment
SONG Jialiang1,2, JIANG Zixue1,2, YI Pan3, CHEN Junhang1,2, LI Zhaoliang1,2, LUO Hong1,2(), DONG Chaofang1,2, XIAO Kui1,2()
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
3.China Electric Power Research Institute Co., Ltd., Beijing 100192, China
引用本文:

宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
Jialiang SONG, Zixue JIANG, Pan YI, Junhang CHEN, Zhaoliang LI, Hong LUO, Chaofang DONG, Kui XIAO. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. Acta Metall Sin, 2023, 59(11): 1487-1498.

全文: PDF(3697 KB)   HTML
摘要: 

通过周浸实验结合腐蚀动力学、常规电化学、微观形貌及腐蚀产物成分分析等方法,研究了在模拟加速海洋和工业大气环境下高铁转向架用钢G390NH的腐蚀行为和产物层的演化规律。结果表明,与$SO_{3}^{2-}$相比,Cl-具有更强的穿透能力,生成的锈层以非稳态的Fe3O4γ-FeOOH为主,该锈层并不能提供非常有效的防护,造成钢的腐蚀速率始终大于6 g/(m2·h)。在酸性$SO_{3}^{2-}$环境中,内锈层中富集了耐蚀的Cu,促进了α-FeOOH的生成,增加了锈层在酸性$SO_{3}^{2-}$环境中的抗腐蚀能力。

关键词 转向架用钢周浸实验大气腐蚀工业大气海洋大气腐蚀行为    
Abstract

Atmospheric corrosion is ubiquitous in transportation, infrastructure, and other areas, and it always reduces the service life of materials. Bogie, an important component of the high-speed railway, performs bearing, guiding, damping, traction, and braking. The safe operation of the high-speed railway is inextricably linked to its service performance. However, for the high-speed railway bogie, its service environment constantly changes as per the operation of the train and being in various atmospheric environments, such as the ocean, pollution, damp-heat, and severe cold for a long time. Therefore, special attention must be paid to the effect of atmospheric corrosion on its service life. The use of weathering steel in bogie has effectively balanced the cost and service life. With the advancement of science and social growth, previous materials are no longer capable of meeting the current service life requirements. G390NH is provided for investigation as a newly designed weathering steel for the bogie. In this study, the corrosion behavior and the product layer evolution law of high-speed rail bogie steel G390NH in simulated marine and industrial atmospheric environments are investigated using periodic wetting tests combined with corrosion kinetics, conventional electrochemistry, microscopic morphology, and corrosion product composition analysis. It demonstrates that the two ions (Cl- and $SO_{3}^{2-}$) have different corrosion mechanisms on the material. In simulated marine atmosphere environment, Cl- has a higher penetrating capacity, and the rust layer consists of unsteady Fe3O4 and γ-FeOOH; furthermore, coupled with the effect of alternating dry and wet, corrosion always maintains a high rate and the rust layer does not give a very effective protection function. However, in the acidic $SO_{3}^{2-}$ environment, although the corrosion is accelerated, a layer of corrosion-resistant Cu is enriched in the inner rust layer and simultaneously, and a large amount of α-FeOOH is promoted, which greatly enhances the corrosion resistance of the rust layer.

Key wordsbogie steel    cycle immersion test    atmospheric corrosion    industrial atmosphere    marine atmosphere    corrosion behavior
收稿日期: 2021-08-30     
ZTFLH:  TG171  
基金资助:国家重点研发计划项目(2017YFB0304602);海洋装备用金属材料及其应用国家重点实验室开放基金项目(SKLMEA-K201908);表面物理与化学重点实验室学科发展基金项目(XKFZ201906)
通讯作者: 肖 葵,xiaokui@ustb.edu.cn,主要从事材料腐蚀与防护方面的研究;
骆 鸿,luohong@ustb.edu.cn,主要从事先进金属、钢铁材料的设计和服役安全方面的研究
Corresponding author: XIAO Kui, professor, Tel: (010)62333975, E-mail: xiaokui@ustb.edu.cn;
LUO Hong, professor, Tel: (010)62334300, E-mail: luohong@ustb.edu.cn
作者简介: 宋嘉良,男,1995年生,博士生
图1  G390NH显微组织的OM像
图2  G390NH在3.5%NaCl和0.01 mol/L NaHSO3溶液中的腐蚀失重曲线
Salt solutionA / (g·m-2)nR2
3.5%NaCl7.6640.9610.991
0.01 mol/L NaHSO33.9260.8560.995
表1  G390NH在3.5%NaCl和0.01 mol/L NaHSO3溶液中的腐蚀动力学拟合结果
图3  G390NH在3.5%NaCl和0.01 mol/L NaHSO3溶液中经过不同周期周浸后的腐蚀速率及其比值
图4  G390NH在2种环境中的电化学极化曲线
Salt solutionTest period / hEcorr / VIcorr / μA
3.5%NaCl24-0.800214.934
120-0.748272.736
240-0.652287.560
360-0.526167.710
0.01 mol/L NaHSO324-0.46543.269
120-0.57469.919
240-0.34630.411
360-0.31028.516
表2  G390NH在3.5%NaCl和0.01 mol/L NaHSO3溶液中的极化曲线拟合结果
图5  G390NH在3.5%NaCl和0.01 mol/L NaHSO3溶液中极化曲线拟合自腐蚀电位(Ecorr)和自腐蚀电流(Icorr)的变化趋势
图6  G390NH在不同环境周浸实验后的腐蚀宏观形貌
图7  G390NH在不同环境周浸实验后的腐蚀微观形貌
图8  G390NH腐蚀360 h锈层截面形貌及EDS面扫分析
图9  3.5%NaCl环境中不同周期腐蚀产物XRD谱
图10  0.01 mol/L NaHSO3环境中不同周期腐蚀产物XRD谱
SampleProduct analysis / (mass fraction, %)α / γ
α-FeOOHγ-FeOOHFe3O4NaClβ-FeOOH
24 h--100.0---
120 h inner28.130.141.8--0.93
120 h outer35.044.520.5--0.79
240 h inner--100.0---
240 h outer32.043.39.814.9-0.74
360 h inner--83.5-16.5-
360 h outer37.028.610.823.6-1.29
表3  3.5%NaCl环境中不同周期腐蚀产物半定量分析结果
SampleProduct analysis / (mass fraction, %)α / γ
α-FeOOHγ-FeOOHFe2O3Fe3O4
120 h80.05.614.4-14.29
240 h inner79.56.713.8-11.87
240 h outer79.87.712.6-10.36
360 h inner78.59.2-12.38.53
360 h outer77.98.89.93.48.85
表4  0.01 mol/L NaHSO3环境中不同周期腐蚀产物半定量分析结果
图11  G390NH各类腐蚀产物占比及α-FeOOH含量与γ-FeOOH含量之比(α / γ)
1 Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
2 Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J]. Corros. Sci., 1974, 14: 279
doi: 10.1016/S0010-938X(74)80037-5
3 Ma Y T, Li Y, Wang F H. Weatherability of 09CuPCrNi steel in a tropical marine environment [J]. Corros. Sci., 2009, 51: 1725
doi: 10.1016/j.corsci.2009.04.024
4 Qian Y H, Ma C H, Niu D, et al. Influence of alloyed chromium on the atmospheric corrosion resistance of weathering steels [J]. Corros. Sci., 2013, 74: 424
doi: 10.1016/j.corsci.2013.05.008
5 Chen Y Y, Tzeng H J, Wei L I, et al. Corrosion resistance and mechanical properties of low-alloy steels under atmospheric conditions [J]. Corros. Sci., 2005, 47: 1001
doi: 10.1016/j.corsci.2004.04.009
6 Wang J, Wang Z Y, Ke W. A study of the evolution of rust on weathering steel submitted to the Qinghai salt lake atmospheric corrosion [J]. Mater. Chem. Phys., 2013, 139: 225
doi: 10.1016/j.matchemphys.2013.01.028
7 Zhang Z J, Ding Y X, Liu D J, et al. Microstructure and corrosion resistance of welded joint of SMA490BW and Q345E dissimilar metals for bogies [J]. Hot Work. Technol., 2021, 50(5): 46
7 张政军, 丁阳喜, 刘德佳 等. 转向架用SMA490BW和Q345E异种金属焊接接头组织和耐腐蚀行为 [J]. 热加工工艺, 2021, 50(5):46
8 Zhang Q, Dai F H, Si Y, et al. Microstructure and salt spray corrosion behavior of bogie Q345C steel surfacing weld [J]. Electr. Weld. Mach., 2016, 46(6): 107
8 张 强, 代夫华, 司 毅 等. 转向架用Q345C钢堆焊接头组织及盐雾腐蚀行为 [J]. 电焊机, 2016, 46(6): 107
9 Kamimura T, Hara S, Miyuki H, et al. Composition and protective ability of rust layer formed on weathering steel exposed to various environments [J]. Corros. Sci., 2006, 48: 2799
doi: 10.1016/j.corsci.2005.10.004
10 Thee C, Hao L, Dong J H, et al. Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet-dry condition [J]. Corros. Sci., 2014, 78: 130
doi: 10.1016/j.corsci.2013.09.008
11 Yamashita M, Konishi H, Kozakura T, et al. In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays [J]. Corros. Sci., 2005, 47: 2492
doi: 10.1016/j.corsci.2004.10.021
12 Dillmann P, Mazaudier F, Hœrlé S. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion [J]. Corros. Sci., 2004, 46: 1401
doi: 10.1016/j.corsci.2003.09.027
13 Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros. Sci., 1994, 36: 283
doi: 10.1016/0010-938X(94)90158-9
14 Singh D D N, Yadav S, Saha J K. Role of climatic conditions on corrosion characteristics of structural steels [J]. Corros. Sci., 2008, 50: 93
doi: 10.1016/j.corsci.2007.06.026
15 Misawa T, Hashimoto K, Shimodaira S. The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature [J]. Corros. Sci., 1974, 14: 131
doi: 10.1016/S0010-938X(74)80051-X
16 Asami K, Kikuchi M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years [J]. Corros. Sci., 2003, 45: 2671
doi: 10.1016/S0010-938X(03)00070-2
17 Allam I M, Arlow J S, Saricimen H. Initial stages of atmospheric corrosion of steel in the Arabian Gulf [J]. Corros. Sci., 1991, 32: 417
doi: 10.1016/0010-938X(91)90123-7
18 Ma Y T, Li Y, Wang F H. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment [J]. Mater. Chem. Phys., 2008, 112: 844
doi: 10.1016/j.matchemphys.2008.06.066
19 Hubbard C R, Snyder R L. RIR-measurement and use in quantitative XRD [J]. Powder Diffr., 1988, 3: 74
doi: 10.1017/S0885715600013257
20 Pan C, Guo M X, Han W, et al. Study of corrosion evolution of carbon steel exposed to an industrial atmosphere [J]. Corros. Eng. Sci. Technol., 2019, 54: 241
doi: 10.1080/1478422X.2019.1574955
21 Zhang H, Du Y X, Li W, et al. Investigation on AC-induced corrosion behavior and product film of X70 steel in aqueous environmental with various ions [J]. Acta Metall. Sin., 2017, 53: 975
21 张 慧, 杜艳霞, 李 伟 等. 不同环境介质中X70钢的交流腐蚀行为及腐蚀产物膜层分析 [J]. 金属学报, 2017, 53: 975
22 Majzlan J, Mazeina L, Navrotsky A. Enthalpy of water adsorption and surface enthalpy of lepidocrocite (γ-FeOOH) [J]. Geochim. Cosmochim. Acta, 2007, 71: 615
doi: 10.1016/j.gca.2006.10.010
23 Majzlan J, Grevel K D, Navrotsky A. Thermodynamics of Fe oxides:Part II. Enthalpies of formation and relative stability of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3) [J]. Am. Mineral., 2003, 88: 855
doi: 10.2138/am-2003-5-614
24 Hara S, Kamimura T, Miyuki H, et al. Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge [J]. Corros. Sci., 2007, 49: 1131
doi: 10.1016/j.corsci.2006.06.016
25 Rémazeilles C, Refait P. On the formation of β-FeOOH (Akaganéite) in chloride-containing environments [J]. Corros. Sci., 2007, 49: 844
doi: 10.1016/j.corsci.2006.06.003
26 Wu W, Cheng X Q, Zhao J B, et al. Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives [J]. Corros. Sci., 2020, 165: 108416
doi: 10.1016/j.corsci.2019.108416
27 Wang Z F, Liu J R, Wu L X, et al. Study of the corrosion behavior of weathering steels in atmospheric environments [J]. Corros. Sci., 2013, 67: 1
doi: 10.1016/j.corsci.2012.09.020
28 Qu Q, Yan C W, Zhang L, et al. Synergism of NaCl and SO2 in the initial atmospheric corrosion of A3 steel [J]. Acta Metall. Sin., 2002, 38: 1062
28 屈 庆, 严川伟, 张 蕾 等. NaCl和SO2在A3钢初期大气腐蚀中的协同效应 [J]. 金属学报, 2002, 38: 1062
29 Evans U R, Taylor C A J. Mechanism of atmospheric rusting [J]. Corros. Sci., 1972, 12: 227
doi: 10.1016/S0010-938X(72)90671-3
30 Misawa T, Kyuno T, Suëtaka W, et al. The mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of low alloy steels [J]. Corros. Sci., 1971, 11: 35
doi: 10.1016/S0010-938X(71)80072-0
31 Gong K, Wu M, Liu G X. Stress corrosion cracking behavior of rusted X100 steel under the combined action of Cl- and HSO3- in a wet-dry cycle environment [J]. Corros. Sci., 2020, 165: 108382
doi: 10.1016/j.corsci.2019.108382
32 Hao L, Zhang S X, Dong J H, et al. Rusting evolution of MnCuP weathering steel submitted to simulated industrial atmospheric corrosion [J]. Metall. Mater. Trans., 2012, 43A: 1724
33 Wang J, Wang Z Y, Ke W. Corrosion behaviour of weathering steel in diluted Qinghai salt lake water in a laboratory accelerated test that involved cyclic wet/dry conditions [J]. Mater. Chem. Phys., 2010, 124: 952
doi: 10.1016/j.matchemphys.2010.07.069
34 Ke W, Dong J H. Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel [J]. Acta Metall. Sin., 2010, 46: 1365
doi: 10.3724/SP.J.1037.2010.00489
34 柯 伟, 董俊华. Mn-Cu钢大气腐蚀锈层演化规律及其耐候性的研究 [J]. 金属学报, 2010, 46: 1365
35 Chen W J, Hao L, Dong J H, et al. Effect of sulphur dioxide on the corrosion of a low alloy steel in simulated coastal industrial atmosphere [J]. Corros. Sci., 2014, 83: 155
doi: 10.1016/j.corsci.2014.02.010
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 刘雨薇, 顾天真, 王振尧, 汪川, 曹公望. Q235Q450NQR1在中国南沙海洋大气环境中暴晒34个月后的腐蚀行为[J]. 金属学报, 2022, 58(12): 1623-1632.
[3] 黄松鹏, 彭灿, 曹公望, 王振尧. BTA保护的白铜在模拟工业大气环境中的腐蚀行为[J]. 金属学报, 2021, 57(3): 317-326.
[4] 刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(9): 1247-1254.
[5] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[6] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[7] 宋学鑫, 黄松鹏, 汪川, 王振尧. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(10): 1355-1365.
[8] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[9] 陈星晨, 王杰, 陈德任, 钟舜聪, 王向峰. Na对于Al早期大气腐蚀的影响[J]. 金属学报, 2019, 55(4): 529-536.
[10] 白杨, 王振华, 李相波, 李焰. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为[J]. 金属学报, 2019, 55(10): 1338-1348.
[11] 郭明晓, 潘晨, 王振尧, 韩薇. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究[J]. 金属学报, 2018, 54(1): 65-75.
[12] 张苏强,赵洪运,舒凤远,王国栋,贺文雄. 焊接热循环对Q315NS钢在H2SO4溶液中腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 808-816.
[13] 万红霞,宋东东,刘智勇,杜翠薇,李晓刚. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53(5): 575-582.
[14] 韩军科,严红,黄耀,周鲁军,杨善武. 耐候钢表面氧化皮的结构特征及其对大气腐蚀行为的影响[J]. 金属学报, 2017, 53(2): 163-174.
[15] 韩林原, 李旋, 储成林, 白晶, 薛烽. 流场环境中AZ31镁合金的腐蚀行为研究[J]. 金属学报, 2017, 53(10): 1347-1356.