Please wait a minute...
金属学报  2023, Vol. 59 Issue (7): 884-892    DOI: 10.11900/0412.1961.2021.00305
  研究论文 本期目录 | 过刊浏览 |
低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为
李小涵1,2, 曹公望2(), 郭明晓1,2, 彭云超3, 马凯军3, 王振尧2()
1中国科学技术大学 材料科学与工程学院 沈阳 110016
2中国科学院金属研究所 沈阳 110016
3国家管网集团东部原油储运有限公司 徐州 221008
Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang
LI Xiaohan1,2, CAO Gongwang2(), GUO Mingxiao1,2, PENG Yunchao3, MA Kaijun3, WANG Zhenyao2()
1School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3PipeChina Network Corporation Eastern Oil Storage and Transportation Co., Ltd., Xuzhou 221008, China
引用本文:

李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
Xiaohan LI, Gongwang CAO, Mingxiao GUO, Yunchao PENG, Kaijun MA, Zhenyao WANG. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. Acta Metall Sin, 2023, 59(7): 884-892.

全文: PDF(2398 KB)   HTML
摘要: 

通过失重分析、腐蚀形貌观察、腐蚀产物分析和电化学测试等方法,对油库常用金属材料低碳钢Q235、管线钢L415和压力容器钢16MnNi暴露在湛江实际真实大气环境中180 d的初期腐蚀行为进行研究。结果表明,大气中的Cl-、SO2和紫外辐照的协同作用加剧了油库常用材料的腐蚀。锈层成分显著影响钢材的腐蚀过程,在此环境下,3种材料服役相同时间时,发生的腐蚀差异主要是由于腐蚀产物的种类和含量造成的。由于低碳钢Q235锈层中含有较多的β-FeOOH、γ-FeOOH和Fe3O4,导致其较高的腐蚀速率。

关键词 大气腐蚀腐蚀产物低碳钢Q235管线钢L415压力容器钢16MnNi    
Abstract

The Zhanjiang oil station is located near the sea, and corrosion factors such as Cl-, SO2, humidity, and UV irradiation in the surrounding environment will endanger the service life of the common materials. Carbon steel Q235 is commonly used as an oil tank pressure ring, pipeline steel L415 is used for oil and gas transportation, and pressure vessel steel 16MnNi is commonly used as the outer wall material of an oil tank. These materials are easily corroded when they are directly exposed to the atmosphere, but there have been few studies in recent years on the short-term corrosion behaviour of common metal materials in oil stations in high humidity and high irradiation industrial marine atmosphere environments. In this work, the initial corrosion behaviour of carbon steel Q235, pipeline steel L415, and pressure vessel steel 16MnNi exposed to the real Zhanjiang atmospheric environment for 180 d were studied through weight loss analysis, corrosion product analysis, corrosion morphology observation, and electrochemical analysis. According to the thickness loss data, carbon steel Q235 had the weakest corrosion resistance of the three materials, whereas pipeline steel L415 had the best corrosion resistance. These common materials were exposed to the same atmospheric environment for the same amount of time, resulting in the same corrosion products in the rust layer, which contained α-FeOOH, γ-FeOOH, and Fe3O4. The difference was that the rust layer of carbon steel Q235 contained a high concentration of β-FeOOH, which may have facilitated the corrosion process. The concentration of γ-FeOOH and Fe3O4 varied amongst the three materials. The rust layer of carbon steel Q235 contained more γ-FeOOH and Fe3O4, followed by pressure vessel steel 16MnNi and pipeline steel L415, which had the least γ-FeOOH and Fe3O4. Furthermore, carbon steel Q235 had the thinnest rust layer and the greatest thickness loss, whereas pipeline steel L415 and pressure vessel steel 16MnNi had a thicker rust layer and less thickness loss. The results of electrochemical experiments showed that the rust layer of carbon steel Q235 has the weakest ability to protect the matrix, whereas the rust layer of L415 has the best ability to protect the matrix. Additionally, the synergistic effect of Cl-, SO2, and UV irradiation destroyed the protective layer of the rust layer and accelerated the corrosion.

Key wordsatmospheric corrosion    corrosion product    carbon steel Q235    pipeline steel L415    pressure vessel steel 16MnNi
收稿日期: 2021-07-27     
ZTFLH:  TG172.3  
通讯作者: 王振尧,zhywang@imr.ac.cn,主要从事自然环境腐蚀方面的研究;
曹公望,gwcao@imr.ac.cn,主要从事金属大气腐蚀方面的研究
Corresponding author: WANG Zhenyao, professor, Tel: (024)23893544, E-mail: zhywang@imr.ac.cn;
CAO Gongwang, Tel: 15040144450, E-mail: gwcao@imr.ac.cn
作者简介: 李小涵,女,1997年生,硕士生
SteelCSiPSCrMnNiFe
Q2350.150.110.0330.0100.050.360.03Bal.
L4150.080.160.015< 0.003-1.61-Bal.
16MnNi0.110.260.011< 0.0030.031.320.03Bal.
表1  Q235、L415和16MnNi钢的化学成分 (mass fraction / %)
图1  Q235、L415和16MnNi钢的微观组织
TimeTmaxTminCloudyRainSun
monthoCoCddd
7332714160
8332614160
9332516131
1030222073
1126202082
1221152154
表2  湛江大气环境随时间的变化
图2  Q235、L415和16MnNi钢在湛江大气环境中暴露180 d时的厚度损失
图3  Q235、L415和16MnNi钢在相同时间相同环境下的表面形貌(180 d)
图4  Q235、L415和16MnNi钢暴露在湛江大气环境中180 d时的截面形貌
图5  Q235、L415和16MnNi钢暴露在相同环境相同时间下的XRD谱
图6  Q235、L415和16MnNi钢暴露在湛江大气环境中180 d的极化曲线
SteelEcorr / mVicorr / (μA·cm-2)
Q235-559.5107.20
L415-662.977.82
16MnNi-652.186.79
表3  Q235、L415和16MnNi钢的腐蚀电位(Ecorr)和腐蚀电流密度(icorr)
图7  Q235、L415和16MnNi钢暴露在湛江大气环境下180 d的Nyquist图和Bode图
图8  EIS的等效电路
SteelRs / (10-4 Ω·cm2)Qr / (10-9 F·cm-2)nrRr / (Ω·cm2)Qdl / (10-3 F·cm-2)ndlRct / (Ω·cm2)Zw / (10-2 Ω·cm2)χ2 / 10-4
Q2352.6745.617140.472.2160.456331.395.2963.98
L415106.75.602151.551.5880.336472.154.7953.68
16MnNi13.685.160141.461.1340.276261.605.3652.61
表4  等效电路的拟合参数
1 Han W, Yu G C, Wang Z Y, et al. Characterisation of initial atmospheric corrosion carbon steels by field exposure and laboratory simulation [J]. Corros. Sci., 2007, 49: 2920
doi: 10.1016/j.corsci.2007.01.009
2 Song Q Q, Wang X D, Pan B Y, et al. Effect of relative humidity on corrosion of Q235 carbon steel under thin electrolyte layer in simulated marine atmosphere [J]. Anti-Corros. Methods Mater., 2020, 67: 187
doi: 10.1108/ACMM-07-2019-2157
3 Zheng L Y, Cao F H, Liu W J, et al. Corrosion behavior of Q235 in simulated natural environment by electrochemical technology [J]. Equip. Environ. Eng., 2011, 8(4): 8
3 郑利云, 曹发和, 刘文娟 等. Q235钢在模拟自然环境下失效行为的电化学研究 [J]. 装备环境工程, 2011, 8(4): 8
4 Stratmann M, Bohnenkamp K, Engell H J. An electrochemical study of phase-transitions in rust layers [J]. Corros. Sci., 1983, 23: 969
doi: 10.1016/0010-938X(83)90024-0
5 Castaño J G, Botero C A, Restrepo A H, et al. Atmospheric corrosion of carbon steel in Colombia [J]. Corros. Sci., 2010, 52: 216
doi: 10.1016/j.corsci.2009.09.006
6 Cai Y K, Zhao Y, Ma X B, et al. Influence of environmental factors on atmospheric corrosion in dynamic environment [J]. Corros. Sci., 2018, 137: 163
doi: 10.1016/j.corsci.2018.03.042
7 He J X, Qin X Z, Yi P, et al. Corrosion exposure study on Q235 steel in marine atmospheric [J]. Surf. Technol., 2006, 35(4): 21
7 何建新, 秦晓洲, 易 平 等. Q235钢海洋大气腐蚀暴露试验研究 [J]. 表面技术, 2006, 35(4): 21
8 Song L Y, Chen Z Y. The role of UV illumination on the NaCl-induced atmospheric corrosion of Q235 carbon steel [J]. Corros. Sci., 2014, 86: 318
doi: 10.1016/j.corsci.2014.06.013
9 Mao X, Liu X, Revie R W. Pitting corrosion of pipeline steel in dilute bicarbonate solution with chloride ions [J]. Corrosion, 1994, 50: 651
doi: 10.5006/1.3293540
10 Chen H L, Wei Y. Mechanism of industrial atmospheric corrosion for carbon steel [J]. Corros. Prot., 2006, 27: 284
10 陈惠玲, 魏 雨. 碳钢在含SO2环境大气中腐蚀机理的研究 [J]. 腐蚀与防护, 2006, 27: 284
11 Lv W Y, Wang Z Y, Yu Q C, et al. Synergic effect of NaHSO3 and NaCl on atmospheric corrosion of Q235 steel [J]. Corros. Sci. Prot. Technol., 2015, 27: 545
11 吕旺燕, 王振尧, 于全成 等. NaHSO3和NaCl对Q235钢大气腐蚀的协同作用 [J]. 腐蚀科学与防护技术, 2015, 27: 545
12 Kamimura T, Hara S, Miyuki H, et al. Composition and protective ability of rust layer formed on weathering steel exposed to various environments [J]. Corros. Sci., 2006, 48: 2799
doi: 10.1016/j.corsci.2005.10.004
13 Palsson N S, Wongpinkaew K, Khamsuk P, et al. Outdoor atmospheric corrosion of carbon steel and weathering steel exposed to the tropical-coastal climate of Thailand [J]. Mater. Corros., 2020, 71: 1019
14 Han W, Pan C, Wang Z Y, et al. Initial atmospheric corrosion of carbon steel in industrial environment [J]. J. Mater. Eng. Perform., 2015, 24: 864
doi: 10.1007/s11665-014-1329-5
15 Ma Y T, Li Y, Wang F H. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment [J]. Mater. Chem. Phys., 2008, 112: 844
doi: 10.1016/j.matchemphys.2008.06.066
16 Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51: 997
doi: 10.1016/j.corsci.2009.02.009
17 Yu Q C, Wang Z Y, Wang C. Corrosion behaviors of low alloy steel and carbon steel deposited with NaCl and NaHSO3 under dry/humid alternative condition [J]. Acta Metall. Sin., 2010, 46: 1133
doi: 10.3724/SP.J.1037.2010.00248
17 于全成, 王振尧, 汪 川. 表面沉积NaCl和NaHSO3的低合金钢和碳钢在干湿交替条件下的腐蚀行为 [J]. 金属学报, 2010, 46: 1133
doi: 10.3724/SP.J.1037.2010.00248
18 Hao L, Zhang S X, Dong J H, et al. Evolution of corrosion of MnCuP weathering steel submitted to wet/dry cyclic tests in a simulated coastal atmosphere [J]. Corros. Sci., 2012, 58: 175
doi: 10.1016/j.corsci.2012.01.017
19 Hao L, Zhang S X, Dong J H, et al. Evolution of atmospheric corrosion of MnCuP weathering steel in a simulated coastal-industrial atmosphere [J]. Corros. Sci., 2012, 59: 270
doi: 10.1016/j.corsci.2012.03.010
20 Xiao K, Dong C F, Li X G, et al. Effect of deposition of NaCl on the initial atmospheric corrosion of Q235 [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 26
20 肖 葵, 董超芳, 李晓刚 等. NaCl颗粒沉积对Q235钢早期大气腐蚀的影响 [J]. 中国腐蚀与防护学报, 2006, 26: 26
21 Hao L, Zhang S X, Dong J H, et al. Rusting evolution of MnCuP weathering steel submitted to simulated industrial atmospheric corrosion [J]. Metall. Mater. Trans., 2012, 43A: 1724
22 Guo M X, Pan C, Wang Z Y, et al. A study on the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2018, 54: 65
doi: 10.11900/0412.1961.2017.00142
22 郭明晓, 潘 晨, 王振尧 等. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究 [J]. 金属学报, 2018, 54: 65
doi: 10.11900/0412.1961.2017.00142
23 Yamashita M, Konishi H, Kozakura T, et al. In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays [J]. Corros. Sci., 2005, 47: 2492
doi: 10.1016/j.corsci.2004.10.021
24 Ståhl K, Nielsen K, Jiang J Z, et al. On the akaganéite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts [J]. Corros. Sci., 2003, 45: 2563
doi: 10.1016/S0010-938X(03)00078-7
25 Asami K, Kikuchi M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years [J]. Corros. Sci., 2003, 45: 2671
doi: 10.1016/S0010-938X(03)00070-2
26 Asami K, Kikuchi M. Characterization of rust layers on weathering steels air-exposed for a long period [J]. Mater. Trans., 2002, 43: 2818
doi: 10.2320/matertrans.43.2818
27 Chen W J, Hao L, Dong J H, et al. Effect of sulphur dioxide on the corrosion of a low alloy steel in simulated coastal industrial atmosphere [J]. Corros. Sci., 2014, 83: 155
doi: 10.1016/j.corsci.2014.02.010
28 Antony H, Perrin S, Dillmann P, et al. Electrochemical study of indoor atmospheric corrosion layers formed on ancient iron artefacts [J]. Electrochim. Acta, 2007, 52: 7754
doi: 10.1016/j.electacta.2007.04.029
29 Alcántara J, Chico B, Díaz I, et al. Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel [J]. Corros. Sci., 2015, 97: 74
doi: 10.1016/j.corsci.2015.04.015
30 Wang Z G, Wang M, Jiang J, et al. Atmospheric corrosion analysis and rust evolution research of Q235 carbon steel at different exposure stages in Chengdu atmospheric environment of China [J]. Scanning, 2020, 2020: 9591516
31 Zhang X, Xiao K, Dong C F, et al. In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl- and S O 4 2 - [J]. Eng. Failure Anal., 2011, 18: 1981
doi: 10.1016/j.engfailanal.2011.03.007
32 Fajardo S, Llorente I, Jiménez J A, et al. Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution [J]. Corros. Sci., 2019, 154: 246
doi: 10.1016/j.corsci.2019.04.026
33 Li C L, Ma Y T, Li Y, et al. EIS monitoring study of atmospheric corrosion under variable relative humidity [J]. Corros. Sci., 2010, 52: 3677
doi: 10.1016/j.corsci.2010.07.018
34 Pan C, Guo M X, Han W, et al. Study of corrosion evolution of carbon steel exposed to an industrial atmosphere [J]. Corros. Eng. Sci. Technol., 2019, 54: 241
doi: 10.1080/1478422X.2019.1574955
35 Wang J H, Wei F I, Chang Y S, et al. The corrosion mechanisms of carbon steel and weathering steel in SO2 polluted atmospheres [J]. Mater. Chem. Phys., 1997, 47: 1
doi: 10.1016/S0254-0584(97)80019-3
36 Song L Y, Ma X M, Chen Z Y, et al. The role of UV illumination on the initial atmospheric corrosion of 09CuPCrNi weathering steel in the presence of NaCl particles [J]. Corros. Sci., 2014, 87: 427
doi: 10.1016/j.corsci.2014.07.013
[1] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[2] 黄松鹏, 彭灿, 曹公望, 王振尧. BTA保护的白铜在模拟工业大气环境中的腐蚀行为[J]. 金属学报, 2021, 57(3): 317-326.
[3] 刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(9): 1247-1254.
[4] 宋学鑫, 黄松鹏, 汪川, 王振尧. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(10): 1355-1365.
[5] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[6] 陈星晨, 王杰, 陈德任, 钟舜聪, 王向峰. Na对于Al早期大气腐蚀的影响[J]. 金属学报, 2019, 55(4): 529-536.
[7] 郭明晓, 潘晨, 王振尧, 韩薇. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究[J]. 金属学报, 2018, 54(1): 65-75.
[8] 张慧, 杜艳霞, 李伟, 路民旭. 不同环境介质中X70钢的交流腐蚀行为及腐蚀产物膜层分析[J]. 金属学报, 2017, 53(8): 975-982.
[9] 韩军科,严红,黄耀,周鲁军,杨善武. 耐候钢表面氧化皮的结构特征及其对大气腐蚀行为的影响[J]. 金属学报, 2017, 53(2): 163-174.
[10] 许立宁,王贝,路民旭. 6.5%Cr钢在高温高压CO2环境下的腐蚀行为研究*[J]. 金属学报, 2016, 52(6): 672-678.
[11] 陈文娟, 郝龙, 董俊华, 柯伟, 文怀梁. 模拟工业-海岸大气中pH值对Q235B钢腐蚀行为的影响*[J]. 金属学报, 2015, 51(2): 191-200.
[12] 陈文娟, 郝龙, 董俊华, 柯伟, 文怀梁. 模拟工业-海岸大气中SO2对Q235B钢腐蚀行为的影响*[J]. 金属学报, 2014, 50(7): 802-810.
[13] 王彬彬, 王振尧, 曹公望, 刘艳洁, 柯伟. 2024铝合金在中国西部盐湖大气环境中的局部腐蚀行为*[J]. 金属学报, 2014, 50(1): 49-56.
[14] 傅欣欣, 董俊华, 韩恩厚, 柯伟. 低碳钢Q235在模拟酸雨大气腐蚀条件下的电化学阻抗谱监测*[J]. 金属学报, 2014, 50(1): 57-63.
[15] 汪兵,刘清友,王向东. 晶粒尺寸对超低碳IF钢耐大气腐蚀性能的影响[J]. 金属学报, 2012, 48(5): 601-606.