|
|
恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响 |
吕晨曦1,2, 孙阳庭1( ), 陈斌1, 蒋益明1, 李劲1 |
1.复旦大学 材料科学系 上海 200433 2.中国科学院金属研究所 沈阳 110016 |
|
Influence of Potentionstatic Pulse Technique on Pitting Behavior and Pitting Resistance of 317L Stainless Steel |
LV Chenxi1,2, SUN Yangting1( ), CHEN Bin1, JIANG Yiming1, LI Jin1 |
1.Department of Materials Science, Fudan University, Shanghai 200433, China 2.Institute of Metal Research, Chinses Academy of Sciences, Shenyang 110016, China |
引用本文:
吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
Chenxi LV,
Yangting SUN,
Bin CHEN,
Yiming JIANG,
Jin LI.
Influence of Potentionstatic Pulse Technique on Pitting Behavior and Pitting Resistance of 317L Stainless Steel[J]. Acta Metall Sin, 2021, 57(12): 1607-1613.
1 |
Sun Y T, Liu X R, Jiang Y M, et al. Recent advances and challenges in divalent and multivalent metal electrodes for metal-air batteries [J]. J. Mater. Chem., 2019, 7A: 18183
|
2 |
Lei L L, Sun Y T, Wang X Y, et al. Strategies to enhance corrosion resistance of Zn electrodes for next generation batteries [J]. Front. Mater., 2020, 7: 96
|
3 |
Esmaily M, Svensson J E, Fajardo S, et al. Fundamentals and advances in magnesium alloy corrosion [J]. Prog. Mater. Sci., 2017, 89: 92
|
4 |
Shi Y Z, Yang B, Liaw P K. Corrosion-resistant high-entropy alloys: A review [J]. Metals, 2017, 7(2): 43
|
5 |
Zhang Z Y, Zhang H Z, Zhao H, et al. Effect of prolonged thermal cycles on the pitting corrosion resistance of a newly developed LDX 2404 lean duplex stainless steel [J]. Corros. Sci., 2016, 103: 189
|
6 |
Loto R T. Comparative study of the pitting corrosion resistance, passivation behavior and metastable pitting activity of NO7718, NO7208 and 439L super alloys in chloride/sulphate media [J]. J. Mater. Res. Technol., 2019, 8: 623
|
7 |
Soltis J. Passivity breakdown, pit initiation and propagation of pits in metallic materials—Review [J]. Corros. Sci., 2015, 90: 5
|
8 |
Zhang Z Y, Zhao H, Zhang H Z, et al. Microstructure evolution and pitting corrosion behavior of UNS S32750 super duplex stainless steel welds after short-time heat treatment [J]. Corros. Sci.,2017, 121: 22
|
9 |
Milchev A, Michailova E. Studies of electrochemical nucleation by means of standard and modified pulse potentiostatic techniques [J]. Electrochem. Commun., 2000, 2: 15
|
10 |
Erazmus-Vignal P, Vignal V, Saedlou S, et al. Corrosion behaviour of sites containing (Cr, Fe)2N particles in thermally aged duplex stainless steel studied using capillary techniques, atomic force microscopy and potentiostatic pulse testing method [J]. Corros. Sci., 2015, 99: 194
|
11 |
Liu Y P, Zhong N, Sun Y T, et al. Effect of short term aging on microstructure evolution, pitting and intergranular corrosion behaviour of UNS31254 [J]. Int. J. Electrochem. Sci., 2016, 11: 3908
|
12 |
Xu J L, Deng B, Sun T, et al. Evaluation of the susceptibility to intergranular attack of 2205 duplex stainless steel by DL-EPR method [J]. Acta Metall. Sin., 2010, 46: 380
|
12 |
徐菊良, 邓 博, 孙 涛等. DL-EPR法评价2205双相不锈钢晶间腐蚀敏感性 [J]. 金属学报, 2010, 46: 380
|
13 |
Martin U, Ress J, Bosch J, et al. Evaluation of the DOS by DL-EPR of UNSM processed inconel 718 [J]. Metals, 2020, 10: 204
|
14 |
Liu C Y, Wu Q S, Chen S H, et al. Detection of sensitization of austenitic stainless steel using potentiostatic pulse test [J]. J. Chin. Soc. Corros. Prot., 1994, 14: 291
|
14 |
柳昌义, 吴全胜, 陈慎豪等. 恒电位脉冲法检测奥氏体不锈钢敏化 [J]. 中国腐蚀与防护学报, 1994, 14: 291
|
15 |
Jiang H R, Zhang J P, Cheng X L, et al. Potentiostatic pulse test for detecting sensitization of high purity ferritic stainless steel [J]. J. Shandong Univ. (Sci. Ed.), 1999, 34(1): 78
|
15 |
姜宏日, 张吉平, 程晓亮等. 恒电位脉冲法检测高纯铁素体不锈钢的敏化 [J].山东大学学报(自然科学版),1999, 34(1): 78
|
16 |
Zhang S H, Ding Z Y, Wang X M. Potentiostatic pulse test for detecting sensitization of steam turbine rotor stainless steel [J]. Turbine Technol., 2007, 49: 312
|
16 |
张胜寒, 丁兆勇, 王秀梅. 恒电位脉冲法检测汽轮机转子钢的敏化 [J]. 汽轮机技术, 2007, 49: 312
|
17 |
Gao J, Jiang Y M, Bo D, et al. Determination of pitting initiation of duplex stainless steel using potentiostatic pulse technique [J]. Electrochim. Acta, 2010, 55: 4837
|
18 |
Vignal V, Ringeval S, Thiébaut S, et al. Influence of the microstructure on the corrosion behaviour of low-carbon martensitic stainless steel after tempering treatment [J]. Corros. Sci., 2014, 85: 42
|
19 |
Vignal V, Richoux V, Suzon E, et al. The use of potentiostatic pulse testing to study the corrosion behavior of welded stainless steels in sodium chloride solution [J]. Mater. Des., 2015, 88: 186
|
20 |
Sun Y T, Sun L, Dai N W, et al. Application of potentiostatic pulse technique and statistical analysis in evaluating pitting resistance of aged 317L stainless steel [J]. Mater. Corros., 2020, 71: 900
|
21 |
Chen B, Sun Y T, Cai D Z, et al. Use of the potentiostatic pulse technique to study and influence pitting behavior of 317L stainless steel [J]. J. Electrochem. Soc., 2020, 167: 041509
|
22 |
Li T S, Scully J R, Frankel G S. Localized corrosion: Passive film breakdown vs pit growth stability: Part II. A model for critical pitting temperature [J]. J. Electrochem. Soc., 2018, 165: C484
|
23 |
Frankel G S, Li T S, Scully J R. Perspective—Localized corrosion: passive film breakdown vs pit growth stability [J]. J. Electrochem. Soc., 2017, 164: C180
|
24 |
Li T S, Scully J R, Frankel G S. Localized corrosion: Passive film breakdown vs. pit growth stability: Part III. A unifying set of principal parameters and criteria for pit stabilization and salt film formation [J]. J. Electrochem. Soc., 2018, 165: C762
|
25 |
Li T S, Scully J R, Frankel G S. Localized corrosion: Passive film breakdown vs. pit growth stability: Part IV. The role of salt film in pit growth: A mathematical framework [J]. J. Electrochem. Soc., 2019, 166: C115
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|