Please wait a minute...
金属学报  2021, Vol. 57 Issue (12): 1607-1613    DOI: 10.11900/0412.1961.2020.00426
  研究论文 本期目录 | 过刊浏览 |
恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响
吕晨曦1,2, 孙阳庭1(), 陈斌1, 蒋益明1, 李劲1
1.复旦大学 材料科学系 上海 200433
2.中国科学院金属研究所 沈阳 110016
Influence of Potentionstatic Pulse Technique on Pitting Behavior and Pitting Resistance of 317L Stainless Steel
LV Chenxi1,2, SUN Yangting1(), CHEN Bin1, JIANG Yiming1, LI Jin1
1.Department of Materials Science, Fudan University, Shanghai 200433, China
2.Institute of Metal Research, Chinses Academy of Sciences, Shenyang 110016, China
引用本文:

吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
Chenxi LV, Yangting SUN, Bin CHEN, Yiming JIANG, Jin LI. Influence of Potentionstatic Pulse Technique on Pitting Behavior and Pitting Resistance of 317L Stainless Steel[J]. Acta Metall Sin, 2021, 57(12): 1607-1613.

全文: PDF(1369 KB)   HTML
摘要: 

利用电化学测试及显微镜观察方法,研究了在恒电位脉冲技术(potentionstatic pulse technique,PPT)中参数选取对317L不锈钢点蚀行为的影响。揭示了高电位(Eh)的取值对测试后样品表面点蚀行为的影响。结果表明,当Eh取值处于钝化电位区间时,点蚀不会发生;当Eh取值在点蚀电位区间时,随着Eh的增加,点蚀的尺寸和数量呈现先增大后稳定的趋势;当Eh取值处于过钝化区间时,样品将无法维持钝化状态。另外,对PPT测试后样品的耐点蚀性进行的研究表明,PPT测试后,样品的点蚀电位与再钝化电位增大,说明钝化膜的耐点蚀性能增强。因此,可以通过选择合适的参数,使PPT作为一种提升不锈钢耐点蚀性能的表面改性手段。

关键词 恒电位脉冲测试技术不锈钢钝化膜点蚀    
Abstract

The potentionstatic pulse technique (PPT) has been widely used as a new electrochemical method in research of stainless-steel corrosion. In addition to the susceptibility detection of stainless steel, PPT has also been recently applied in research of pitting corrosion. The influence of PPT parameters on pitting behavior of 317L stainless steel is studied using electrochemical measurements and optical microscopy. This investigation reveals the effect of high potential (Eh) parameters on pitting behavior in samples. The results show that when Eh is in the range of the passivation potential, pits will not occur. When Eh is applied in the pitting potential range, the size and number of pits first increase and then stabilize. When Eh is in the range of the transpassivation potential, the sample can not maintain the passive condition. In addition, potentiodynamic polarization tests show that the pitting potential and re-passivation potential of PPT test samples increase, indicating that the pitting resistance of 317L stainless steel can be enhanced by the PPT test. Therefore, the PPT can be used as a surface modification method to improve pitting corrosion resistance of stainless steel after selecting appropriate parameters.

Key wordspotentionstatic pulse technique    stainless steel    passive film    pitting corrosion
收稿日期: 2020-10-26     
ZTFLH:  TG172.3  
基金资助:国家自然科学基金项目(51901046);中国科学院战略性先导科技专项(A类)项目(XDA13040502)
作者简介: 吕晨曦,女,1989年生,博士生
图1  恒电位脉冲技术(PPT)测试示意图
图2  不同高电位PPT测试的电流密度-时间曲线
图3  不同高电位PPT测试后317L不锈钢(317LSS)典型OM像
图4  不同高电位PPT测试后317LSS的整体形貌图
图5  不同高电位PPT测试后317LSS点蚀的尺寸分布
EhNumber

Area ratio

%

Average area

μm2

Average

diameter

μm

Distribution of

diameter

V
0.6210.024145.5311.914.78
0.8390.068228.3215.635.18
1.0420.067203.0914.225.70
表1  不同高电位PPT测试后317LSS点蚀的统计结果
图6  不同测试条件下的动电位极化曲线(a) diameter of 10 mm(b) diameter of 10 mm after PPT measurements (Eh = 0.6 V)(c) diameter of 4 mm
Exposure conditionEp / mVAverageDistribution
1st2nd3rd4thmV
Diameter of 10 mm598582503453534.0068.12
Diameter of 10 mm685531590451564.2598.61
after PPT measurement
Diameter of 4 mm983734531898786.50199.23
表2  点蚀电位统计结果
图7  PPT测试(Eh = 0.6 V)后与未经PPT测试317LSS样品的循环伏安曲线
1 Sun Y T, Liu X R, Jiang Y M, et al. Recent advances and challenges in divalent and multivalent metal electrodes for metal-air batteries [J]. J. Mater. Chem., 2019, 7A: 18183
2 Lei L L, Sun Y T, Wang X Y, et al. Strategies to enhance corrosion resistance of Zn electrodes for next generation batteries [J]. Front. Mater., 2020, 7: 96
3 Esmaily M, Svensson J E, Fajardo S, et al. Fundamentals and advances in magnesium alloy corrosion [J]. Prog. Mater. Sci., 2017, 89: 92
4 Shi Y Z, Yang B, Liaw P K. Corrosion-resistant high-entropy alloys: A review [J]. Metals, 2017, 7(2): 43
5 Zhang Z Y, Zhang H Z, Zhao H, et al. Effect of prolonged thermal cycles on the pitting corrosion resistance of a newly developed LDX 2404 lean duplex stainless steel [J]. Corros. Sci., 2016, 103: 189
6 Loto R T. Comparative study of the pitting corrosion resistance, passivation behavior and metastable pitting activity of NO7718, NO7208 and 439L super alloys in chloride/sulphate media [J]. J. Mater. Res. Technol., 2019, 8: 623
7 Soltis J. Passivity breakdown, pit initiation and propagation of pits in metallic materials—Review [J]. Corros. Sci., 2015, 90: 5
8 Zhang Z Y, Zhao H, Zhang H Z, et al. Microstructure evolution and pitting corrosion behavior of UNS S32750 super duplex stainless steel welds after short-time heat treatment [J]. Corros. Sci.,2017, 121: 22
9 Milchev A, Michailova E. Studies of electrochemical nucleation by means of standard and modified pulse potentiostatic techniques [J]. Electrochem. Commun., 2000, 2: 15
10 Erazmus-Vignal P, Vignal V, Saedlou S, et al. Corrosion behaviour of sites containing (Cr, Fe)2N particles in thermally aged duplex stainless steel studied using capillary techniques, atomic force microscopy and potentiostatic pulse testing method [J]. Corros. Sci., 2015, 99: 194
11 Liu Y P, Zhong N, Sun Y T, et al. Effect of short term aging on microstructure evolution, pitting and intergranular corrosion behaviour of UNS31254 [J]. Int. J. Electrochem. Sci., 2016, 11: 3908
12 Xu J L, Deng B, Sun T, et al. Evaluation of the susceptibility to intergranular attack of 2205 duplex stainless steel by DL-EPR method [J]. Acta Metall. Sin., 2010, 46: 380
12 徐菊良, 邓 博, 孙 涛等. DL-EPR法评价2205双相不锈钢晶间腐蚀敏感性 [J]. 金属学报, 2010, 46: 380
13 Martin U, Ress J, Bosch J, et al. Evaluation of the DOS by DL-EPR of UNSM processed inconel 718 [J]. Metals, 2020, 10: 204
14 Liu C Y, Wu Q S, Chen S H, et al. Detection of sensitization of austenitic stainless steel using potentiostatic pulse test [J]. J. Chin. Soc. Corros. Prot., 1994, 14: 291
14 柳昌义, 吴全胜, 陈慎豪等. 恒电位脉冲法检测奥氏体不锈钢敏化 [J]. 中国腐蚀与防护学报, 1994, 14: 291
15 Jiang H R, Zhang J P, Cheng X L, et al. Potentiostatic pulse test for detecting sensitization of high purity ferritic stainless steel [J]. J. Shandong Univ. (Sci. Ed.), 1999, 34(1): 78
15 姜宏日, 张吉平, 程晓亮等. 恒电位脉冲法检测高纯铁素体不锈钢的敏化 [J].山东大学学报(自然科学版),1999, 34(1): 78
16 Zhang S H, Ding Z Y, Wang X M. Potentiostatic pulse test for detecting sensitization of steam turbine rotor stainless steel [J]. Turbine Technol., 2007, 49: 312
16 张胜寒, 丁兆勇, 王秀梅. 恒电位脉冲法检测汽轮机转子钢的敏化 [J]. 汽轮机技术, 2007, 49: 312
17 Gao J, Jiang Y M, Bo D, et al. Determination of pitting initiation of duplex stainless steel using potentiostatic pulse technique [J]. Electrochim. Acta, 2010, 55: 4837
18 Vignal V, Ringeval S, Thiébaut S, et al. Influence of the microstructure on the corrosion behaviour of low-carbon martensitic stainless steel after tempering treatment [J]. Corros. Sci., 2014, 85: 42
19 Vignal V, Richoux V, Suzon E, et al. The use of potentiostatic pulse testing to study the corrosion behavior of welded stainless steels in sodium chloride solution [J]. Mater. Des., 2015, 88: 186
20 Sun Y T, Sun L, Dai N W, et al. Application of potentiostatic pulse technique and statistical analysis in evaluating pitting resistance of aged 317L stainless steel [J]. Mater. Corros., 2020, 71: 900
21 Chen B, Sun Y T, Cai D Z, et al. Use of the potentiostatic pulse technique to study and influence pitting behavior of 317L stainless steel [J]. J. Electrochem. Soc., 2020, 167: 041509
22 Li T S, Scully J R, Frankel G S. Localized corrosion: Passive film breakdown vs pit growth stability: Part II. A model for critical pitting temperature [J]. J. Electrochem. Soc., 2018, 165: C484
23 Frankel G S, Li T S, Scully J R. Perspective—Localized corrosion: passive film breakdown vs pit growth stability [J]. J. Electrochem. Soc., 2017, 164: C180
24 Li T S, Scully J R, Frankel G S. Localized corrosion: Passive film breakdown vs. pit growth stability: Part III. A unifying set of principal parameters and criteria for pit stabilization and salt film formation [J]. J. Electrochem. Soc., 2018, 165: C762
25 Li T S, Scully J R, Frankel G S. Localized corrosion: Passive film breakdown vs. pit growth stability: Part IV. The role of salt film in pit growth: A mathematical framework [J]. J. Electrochem. Soc., 2019, 166: C115
[1] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[2] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[3] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[4] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[5] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[6] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[7] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[8] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[9] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[10] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[11] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[12] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[13] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[14] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[15] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.