Please wait a minute...
金属学报  2020, Vol. 56 Issue (11): 1541-1550    DOI: 10.11900/0412.1961.2020.00089
  本期目录 | 过刊浏览 |
2024铝合金表面PEDOT涂层的电化学制备及耐腐蚀性能
高博文1,2, 王美涵1(), 闫茂成2(), 赵洪涛2, 魏英华2, 雷浩2
1 沈阳大学机械工程学院 沈阳 110044
2 中国科学院金属研究所 沈阳 110016
Electrochemical Preparation and Corrosion Resistance of PEDOT Coatings on Surface of 2024 Aluminum Alloy
GAO Bowen1,2, WANG Meihan1(), YAN Maocheng2(), ZHAO Hongtao2, WEI Yinghua2, LEI Hao2
1 School of Mechanical Engineering, Shenyang University, Shenyang 110044, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

高博文, 王美涵, 闫茂成, 赵洪涛, 魏英华, 雷浩. 2024铝合金表面PEDOT涂层的电化学制备及耐腐蚀性能[J]. 金属学报, 2020, 56(11): 1541-1550.
Bowen GAO, Meihan WANG, Maocheng YAN, Hongtao ZHAO, Yinghua WEI, Hao LEI. Electrochemical Preparation and Corrosion Resistance of PEDOT Coatings on Surface of 2024 Aluminum Alloy[J]. Acta Metall Sin, 2020, 56(11): 1541-1550.

全文: PDF(3387 KB)   HTML
摘要: 

分别采用循环伏安法和恒电流法在2024铝合金基底上电沉积聚3,4-乙烯二氧噻吩(PEDOT)涂层,考察在3种电解质溶液(高氯酸锂(LiClO4)和十二烷基硫酸钠(SDS)水溶液,邻苯二甲酸氢钠(C8H5NaO4)和SDS水溶液,六氟磷酸四丁铵(TBAPF6)乙腈溶液)中聚合3,4-乙烯二氧噻吩(EDOT)对PEDOT涂层生长和形貌的影响。通过电偶腐蚀、电化学阻抗谱(EIS)和扫描振动电极技术(SVET)研究PEDOT涂层与铝合金基底之间的相互作用。结果表明,TBAPF6不仅对基底具有钝化和缓蚀作用,而且能够显著降低EDOT的氧化电位。恒电流法制备的涂层表面呈球状团聚且完整致密。电偶腐蚀和EIS结果表明,PEDOT涂层阻隔了腐蚀介质并使基底钝化,其阻值在DHS溶液(3.5 g/L (NH4)2SO2+0.5 g/L NaCl)中浸泡3 d后达到最大。SVET结果表明,破损的PEDOT涂层能够促进表面电荷离域,避免电荷集中,产生电化学保护效应。

关键词 PEDOT涂层2024铝合金电沉积EISSVET    
Abstract

Poly (3,4-ethylenedioxythiophene) (PEDOT) is one of the most promising anticorrosive materials due to its outstanding conductivity, stability, and environmental compatibility. From the standpoint of corrosion protection of aluminum alloys, PEDOT coatings are a good substitute for the traditional toxic chromium-based coatings. Electrochemical deposition, as a convenient and clean synthesis approach, has been widely employed for direct preparation of PEDOT coatings. Herein, cyclic voltammetry and constant-current method were used to electrodeposit PEDOT coatings on 2024 aluminum alloy substrates. The effects of polymerizing 3,4-ethylenedioxythiophene (EDOT) in three electrolyte solutions (lithium perchlorate (LiClO4) and sodium dodecyl sulfate (SDS), sodium hydrogen phthalate (C8H5NaO4) and SDS, and tetrabutylammonium hexafluorophosphate (TBAPF6) acetonitrile) on the growth and morphology of the PEDOT coatings were investigated. The interactions between the coating and the aluminum substrate were studied through galvanic corrosion, electrochemical impedance spectra (EIS), and scanning vibration electrode technology (SVET). The results show that TBAPF6 exhibited passivation and corrosion-inhibition effects on the substrate and significantly reduced the oxidation potential of EDOT. The surface morphology of the coating prepared via constant-current method showed complete and dense agglomerated spherical particles. The PEDOT coating formed a passivation layer on the substrate, and thus protected it from the corrosive medium. The maximum resistance was achieved in DHS solution (3.5 g/L (NH4)2SO2+0.5 g/L NaCl) after 3 d. The scratched PEDOT coating could promote surface charge delocalization and avoid charge concentration, resulting in electrochemical protection of the aluminum alloy.

Key wordsPEDOT coating    2024 aluminum alloy    electrodeposition    EIS    SVET
收稿日期: 2020-03-19     
ZTFLH:  TG178  
基金资助:国家自然科学基金项目(52071320);国家重点基础研究发展计划项目(2014CB643304);中国科学院A类战略性先导科技专项项目(XDA13040500);辽宁省高等学校创新人才支持计划项目(LR2019044)
作者简介: 高博文,男,1994年生,硕士生
SolutionComposition

EDOT addition

mol·L-1

130×10-3 mol·L-1 sodium dodecyl sulfate (SDS)+0.1 mol·L-1 LiClO430×10-3
20.1 mol·L-1 sodium hydrogen phthalate (C8H5NaO4)+0.14 mol·L-1 SDS0.1
326×10-3 mol·L-1 tetrabutylammonium hexafluorophosphate (TBAPF6) acetonitrile0.1
表1  3种电解质溶液成分和3,4-乙烯二氧噻吩(EDOT)单体加入量
图1  在不同电解质溶液中电聚合EDOT制备聚3,4-乙烯二氧噻吩(PEDOT)涂层的循环伏安曲线及涂层宏观形貌
图2  在不同电解质溶液中电聚合EDOT制备PEDOT涂层的恒电位曲线及涂层宏观形貌
图3  在不同电解质溶液中恒电流电聚合EDOT制备PEDOT涂层的SEM像
图4  在DHS溶液(3.5 g/L (NH4)2SO2+0.5 g/L NaCl)中PEDOT/2024铝合金电极与2024铝合金电极偶接时的电位(E)和电流密度(i)
图5  在DHS溶液中2024铝合金电极和PEDOT/2024铝合金电极的EIS
图6  浸泡电极的等效电路图
图7  PEDOT/2024铝合金电极划痕处在DHS溶液中浸泡不同时间的扫描振动电极(SVET)电流密度分布图
[1] Dudoladov A O, Buryakovskaya O A, Vlaskin M S, et al. Generation of hydrogen by aluminium oxidation in aquaeous solutions at low temperatures [J]. Int. J. Hydrogen Energy, 2016, 41: 2230
[2] Zhang X F, Fu C R, Xia Y J, et al. Atomistic origin of the complex morphological evolution of aluminum nanoparticles during oxidation: A chain-like oxide nucleation and growth mechanism [J]. ACS Nano, 2019, 13: 3005
pmid: 30785726
[3] Gao L, Yue R R, Xu J K, et al. Pt-PEDOT/rGO nanocomposites: One-pot preparation and superior electrochemical sensing performance for caffeic acid in tea [J]. J. Electroanal. Chem., 2018, 816: 14
[4] Li M R, Wang W, Chen Z, et al. Electrochemical determination of paracetamol based on Au@graphene core-shell nanoparticles doped conducting polymer PEDOT nanocomposite [J]. Sens. Actuators, 2018, 260B: 778
[5] Aguirre J, Daille L, Fischer D A, et al. Study of poly(3,4-ethylendioxythiphene) as a coating for mitigation of biocorrosion of AISI 304 stainless steel in natural seawater [J]. Prog. Org. Coat., 2017, 113: 175
[6] Hou J, Zhu G, Xu J K, et al. Anticorrosion performance of epoxy coatings containing small amount of inherently conducting PEDOT/PSS on hull steel in seawater [J]. J. Mater. Sci. Technol., 2013, 29: 678
[7] Brânzoi V, Pilan L, Golgovici F, et al. Electrochemical activity and corrosion protection properties of doped polypyrrole electrodeposited at pure aluminium electrode [J]. Mol. Cryst. Liq. Cryst., 2006, 446: 305
[8] Cheung K M, Bloor D, Stevens G C. Characterization of polypyrrole electropolymerized on different electrodes [J]. Polymer, 1988, 29: 1709
[9] Zhu G, Hou J, Zhu H F, et al. Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) on stainless steel and its corrosion inhibition performance [J]. J. Coat. Technol. Res., 2013, 10: 659
[10] Kumar A M, Hussein M A, Adesina A Y, et al. Influence of surface treatment on PEDOT coatings: Surface and electrochemical corrosion aspects of newly developed Ti alloy [J]. RSC Adv., 2018, 8: 19181
[11] Lazzaroni R, Brédas J L, Dannetun P, et al. The chemical and electronic structure of the interface between aluminum and conjugated polymers [J]. Electrochim. Acta, 1994, 39: 235
[12] Gustafsson H, Kvarnström C, Ivaska A. Comparative study of n-doping and p-doping of poly(3,4-ethylenedioxythiophene) electrosynthesised on aluminium [J]. Thin Solid Films, 2008, 517: 474
[13] Bantikassegn W, Inganäs O. Electronic properties of junctions between aluminum and doped poly (3,4-ethylenedioxythiophene) [J]. Thin Solid Films, 1997, 293: 138
[14] Duan C H, Willems R E M, van Franeker J J, et al. Effect of side chain length on the charge transport, morphology, and photovoltaic performance of conjugated polymers in bulk heterojunction solar cells [J]. J. Mater. Chem., 2016, 4: 1855
[15] Hwang J, Amy F, Kahn A. Spectroscopic study on sputtered PEDOT·PSS: Role of surface PSS layer [J]. Org. Electron., 2006, 7: 387
[16] Yang Q, Yu S W, Fu P, et al. Boosting performance of non-fullerene organic solar cells by 2D g-C3N4 doped PEDOT:PSS [J]. Adv. Funct. Mater., 2020, 30: 1910205
doi: 10.1002/adfm.v30.15
[17] Song I S, Heo S W, Lee J Y, et al. Study on the ClO4 doped PEDOT-PEG in organic solvent using a hole injection layer for PLEDs [J]. J. Ind. Eng. Chem., 2011, 17: 651
[18] Del-Oso J A, Frontana-Uribe B A, Maldonado J L, et al. Electrochemical deposition of poly[ethylene-dioxythiophene] (PEDOT) films on ITO electrodes for organic photovoltaic cells: Control of morphology, thickness, and electronic properties [J]. J. Solid State Electrochem., 2018, 22: 2025
doi: 10.1007/s10008-018-3909-z
[19] Adamczyk L, Kulesza P J. Fabrication of composite coatings of 4-(pyrrole-1-yl) benzoate-modified poly-3,4-ethylenedioxythiophene with phosphomolybdate and their application in corrosion protection [J]. Electrochim. Acta, 2011, 56: 3649
doi: 10.1016/j.electacta.2010.12.078
[20] Hülser P, Beck F. Electrodeposition of polypyrrole layers on aluminium from aqueous electrolytes [J]. J. Appl. Electrochem., 1990, 20: 596
doi: 10.1007/BF01008869
[21] Patra S, Barai K, Munichandraiah N. Scanning electron microscopy studies of PEDOT prepared by various electrochemical routes [J]. Synth. Met., 2008, 158: 430
doi: 10.1016/j.synthmet.2008.03.002
[22] Martins J I, Costa S C, Bazzaoui M, et al. Conditions to prepare PPy/Al2O3/Al used as a solid-state capacitor from aqueous malic solutions [J]. J. Power Sources, 2006, 160: 1471
doi: 10.1016/j.jpowsour.2006.03.020
[23] Sakmeche N, Aaron J J, Aeiyach S, et al. Usefulness of aqueous anionic micellar media for electrodeposition of poly-(3,4-ethylenedioxythiophene) films on iron, mild steel and aluminium [J]. Electrochim. Acta, 2000, 45: 1921
doi: 10.1016/S0013-4686(99)00417-X
[24] Sundfors F, Gustafsson H, Ivaska A, et al. Characterisation of the aluminium-electropolymerised poly(3,4-ethylenedioxythiophene) system [J]. J. Solid State Electrochem., 2010, 14: 1185
doi: 10.1007/s10008-009-0943-x
[25] Mansfeld F, Jeanjaquet S L, Kendig M W. An electrochemical impedance spectroscopy study of reactions at the metal/coating interface [J]. Corros. Sci., 1986, 26: 735
doi: 10.1016/0010-938X(86)90037-5
[26] Anothumakkool B, Soni R, Bhange S N, et al. Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor [J]. Energy Environ. Sci., 2015, 8: 1339
doi: 10.1039/C5EE00142K
[27] Groenendaal L, Jonas F, Freitag D, et al. Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future [J]. Adv. Mater., 2000, 12: 481
doi: 10.1002/(ISSN)1521-4095
[28] Malik M A, Włodarczyk R, Kulesza P J, et al. Protective properties of hexacyanoferrate containing polypyrrole films on stainless steel [J]. Corros. Sci., 2005, 47: 771
doi: 10.1016/j.corsci.2004.07.022
[29] Vempati S, Ertas Y, Celebioglu A, et al. Tuning the degree of oxidation and electron delocalization of poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) with solid-electrolyte [J]. Appl. Surf. Sci., 2017, 419: 770
doi: 10.1016/j.apsusc.2017.05.049
[30] Prabakar S J R, Pyo M. Corrosion protection of aluminum in LiPF6 by poly(3,4-ethylenedioxythiophene) nanosphere-coated multiwalled carbon nanotube [J]. Corros. Sci., 2012, 57: 42
doi: 10.1016/j.corsci.2011.12.036
[31] Yan M C, Tallman D E, Rasmussen S C, et al. Corrosion control coatings for aluminum alloys based on neutral and n-doped conjugated polymers [J]. J. Electrochem. Soc., 2009, 156: C360
[1] 杭弢, 薛琦, 李明. 无模板电沉积金属微纳米阵列材料研究进展[J]. 金属学报, 2022, 58(4): 486-502.
[2] 高运明, 何林, 秦庆伟, 李光强. 利用ZrO2 固体电解质研究Na3AlF6-SiO2 熔盐中的电沉积[J]. 金属学报, 2022, 58(10): 1292-1304.
[3] 赵明雨,甄会娟,董志宏,杨秀英,彭晓. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究[J]. 金属学报, 2019, 55(7): 902-910.
[4] 赵婷婷, 康志新, 马夏雨. 一步电沉积法制备超疏水Cu网及其耐腐蚀和油水分离性能[J]. 金属学报, 2018, 54(1): 109-117.
[5] 周小卫,欧阳春,乔岩欣,沈以赴. 活性Ti表面电沉积Ni-CeO2复合镀层及其强韧性机理分析[J]. 金属学报, 2017, 53(2): 140-152.
[6] 钟晓聪, 蒋良兴, 吕晓军, 赖延清, 李劼, 刘业翔. 氯离子对Pb-Ag-RE合金阳极电化学行为的影响[J]. 金属学报, 2015, 51(3): 378-384.
[7] 颜永得, 杨晓南, 张密林, 李星, 王丽, 薛云, 张志俭. 氯化物熔盐体系共电沉积法制备Al-Li-Gd合金的研究*[J]. 金属学报, 2014, 50(8): 989-994.
[8] 单海权, 张跃飞, 毛圣成, 张泽. 电沉积纳米孪晶Ni中五次孪晶的电子显微分析*[J]. 金属学报, 2014, 50(3): 305-312.
[9] 王彬彬, 王振尧, 曹公望, 刘艳洁, 柯伟. 2024铝合金在中国西部盐湖大气环境中的局部腐蚀行为*[J]. 金属学报, 2014, 50(1): 49-56.
[10] 刘侠和, 吴欣强, 韩恩厚. 温度对国产核级316L不锈钢在加Zn水中电化学腐蚀性能的影响*[J]. 金属学报, 2014, 50(1): 64-70.
[11] 周小卫,沈以赴. Ni-CeO2纳米镀层在酸性NaCl溶液中的腐蚀行为及电化学阻抗谱特征[J]. 金属学报, 2013, 49(9): 1121-1130.
[12] 李绪亮,张迎春,江凡,王莉莉,刘艳红,孙宁波. 电流密度对V-4Cr-4Ti合金基体上电沉积W涂层显微结构的影响[J]. 金属学报, 2013, 49(6): 745-750.
[13] 龙琼,钟云波,李甫,刘春梅,周俊峰,范丽君,李明杰. 稳恒磁场对Fe-Si复合电镀层形貌及Si含量的影响[J]. 金属学报, 2013, 49(10): 1201-1210.
[14] 周小卫 沈以赴 顾冬冬. 双脉冲电沉积纳米晶Ni-CeO2复合镀层的微观结构及其高温抗氧化性能[J]. 金属学报, 2012, 48(8): 957-964.
[15] 冯爱新 聂贵锋 薛伟 曹宇鹏 徐晓翔 李彬 施芬. 2024铝合金薄板激光冲击波加载的实验研究[J]. 金属学报, 2012, 48(2): 205-210.