Please wait a minute...
金属学报  2019, Vol. 55 Issue (11): 1457-1468    DOI: 10.11900/0412.1961.2019.00030
  研究论文 本期目录 | 过刊浏览 |
铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响
冯浩1,李花兵1(),路鹏冲1,杨纯田2,姜周华1,武晓雷3
1. 东北大学冶金学院 沈阳 110819
2. 沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819
3. 中国科学院力学研究所非线性力学国家重点实验室 北京 100190
Investigation on Microbiologically Influenced Corrosion Behavior of CrCoNi Medium-Entropy Alloy byPseudomonas Aeruginosa
FENG Hao1,LI Huabing1(),LU Pengchong1,YANG Chuntian2,JIANG Zhouhua1,WU Xiaolei3
1. School of Metallurgy, Northeastern University, Shenyang 110819, China
2. Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
3. State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
引用本文:

冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.
Hao FENG, Huabing LI, Pengchong LU, Chuntian YANG, Zhouhua JIANG, Xiaolei WU. Investigation on Microbiologically Influenced Corrosion Behavior of CrCoNi Medium-Entropy Alloy byPseudomonas Aeruginosa[J]. Acta Metall Sin, 2019, 55(11): 1457-1468.

全文: PDF(18001 KB)   HTML
摘要: 

采用多种电化学实验手段及场发射扫描电子显微镜(FESEM)、激光共聚焦扫描显微镜(CLSM)等分析技术,结合活死细菌染色实验、点蚀坑深度分析等方法,以316L不锈钢为对比,研究了CrCoNi中熵合金在含铜绿假单胞菌培养基中的微生物腐蚀行为。结果表明:铜绿假单胞菌能够在CrCoNi中熵合金表面形成不均匀的生物被膜,从而降低开路电位,减小极化电阻和电荷转移电阻,增大腐蚀电流密度;铜绿假单胞菌生物被膜在一定程度上破坏了钝化膜,导致浸泡在含铜绿假单胞菌培养基中的CrCoNi中熵合金的最大点蚀坑深度(4.8 μm)大于无菌培养基中CrCoNi中熵合金的最大点蚀坑深度(2.3 μm)。与316L不锈钢相比,CrCoNi中熵合金的开路电位较高,腐蚀电流密度和腐蚀速率较小,钝化膜的修复能力较强,在含铜绿假单胞菌培养基中浸泡后的最大点蚀坑深度小于316L不锈钢(5.8 μm)。

关键词 CrCoNi中熵合金铜绿假单胞菌微生物腐蚀生物被膜点蚀    
Abstract

The CrCoNi medium-entropy alloy (MEA) has excellent strength and toughness, and can be used as the basis for the development of promising engineering alloys in the future. However, microbiologically influenced corrosion (MIC) of CrCoNi MEA has rarely been reported. Especially, pseudomonas aeruginosa (P. aeruginosa) is the typical bacteria associated with MIC, which is widely distributed in the ocean and soil. It can form biofilm on the surface of steel and accelerate the corrosion of carbon steels and stainless steels (SSs). In this study, the electrochemical experiments such as open current potential (OCP), linear polarization resistance (LPR), electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS) and cyclic polarization (CP) were used to investigate the MIC behavior of CrCoNi MEA caused by P. aeruginosa, in comparison with 316L SS. Surface analysis techniques such as FESEM and CLSM were used to observe the P. aeruginosa biofilm and pitting morphology on the coupon surface. The results show that P. aeruginosa could form an uneven biofilm on the surface of CrCoNi MEA coupons. The P. aeruginosa accelerated the corrosion rate of CrCoNi MEA, which was demonstrated by a negative shift of open circuit potential, a decrease of polarization resistance and charge transfer resistance, and an increase of corrosion current density in P. aeruginosa medium. The P. aeruginosa biofilm could destroy the passive film of the CrCoNi MEA coupons, which led to the maximum pit depth of the coupons exposed in P. aeruginosa medium (4.8 μm) for 14 d much deeper than that in sterile medium (2.3 μm). Compared with 316L SS, CrCoNi had higher open circuit potential, lower corrosion current density and corrosion rate, and higher repairability of passive film. Meanwhile, the maximum pit depth on the CrCoNi MEA coupons in P. aeruginosa medium was shallower than that of 316L SS (5.8 μm).

Key wordsCrCoNi medium-entropy alloy (MEA)    pseudomonas aeruginosa    microbiologically influenced corrosion (MIC)    biofilm    pitting corrosion
收稿日期: 2019-01-29     
ZTFLH:  TG178  
基金资助:国家自然科学基金项目Nos(51434004);国家自然科学基金项目Nos(51774074);国家自然科学基金项目Nos(U1435205);国家自然科学基金项目Nos(51434004、51774074和U1435205);中央高校基本科研业务费专项基金项目No(N172512033);以及沈阳市重大科技成果转化项目No(Z17-5-003)
作者简介: 冯浩,男,1992年生,博士生
MaterialCrCoNiCSiMnMoFe
CrCoNi MEA30.5834.7134.71-----
316L SS16.78-10.500.020.431.182.09Bal.
表1  CrCoNi中熵合金及316L不锈钢的化学成分 (mass fraction / %)
图1  CrCoNi中熵合金与316L不锈钢在无菌及含铜绿假单胞菌培养基中的开路电位(EOCP)、线性极化电阻的倒数(1/Rp)和腐蚀速率随时间的变化规律
图2  无菌及含铜绿假单胞菌培养基在14 d内的pH值变化曲线
图3  CrCoNi中熵合金与316L不锈钢在无菌及含铜绿假单胞菌培养基中浸泡不同时间的Nyquist图和Bode图
图4  电化学阻抗谱(EIS)等效电路图
SampleDurationRsQfYnfRfQdlYndlRctΣχ2
dΩ·cm2μF·cm-2·SnΩ·cm2μF·cm-2·Sn106 Ω·m210-3

CrCoNi MEA in sterile medium

16.7320.200.9313.110.400.921.220.22
47.0918.850.9346.26.030.927.140.34
77.2618.200.9335.66.390.919.730.41
107.0118.580.9329.56.620.927.850.27
147.3418.680.9341.05.970.9213.460.28

CrCoNi MEA in P. aeruginosa medium

18.0722.240.9026.09.400.891.380.18
46.4921.790.90144.25.020.910.830.74
76.5823.570.90131.76.310.910.770.67
106.7320.460.91195.34.150.921.140.65
146.9017.860.91314.02.860.932.760.68

316 SS in P. aeruginosa medium

15.8579.500.8630.941.900.850.290.64
45.4243.270.85607.29.240.921.061.08
75.8552.090.85521.06.170.880.550.67
104.8664.740.87802.524.970.862.580.23
144.8179.430.86689.326.080.861.460.17
表2  CrCoNi中熵合金与316L不锈钢在无菌及含铜绿假单胞菌培养基中EIS拟合参数
图5  CrCoNi中熵合金与316L不锈钢在无菌及含铜绿假单胞菌培养基中浸泡7和14 d后的循环极化曲线

Sample

icorrEcorrEb,10Eprot?E
nA·cm-2VVVV
CrCoNi MEA in sterile medium4.36-0.3280.7370.7640.028
CrCoNi MEA in P. aeruginosa medium9.38-0.3680.5150.6230.016
316L SS in P. aeruginosa medium25.58-0.3730.545-0.2150.758
表3  CrCoNi中熵合金与316L不锈钢在无菌及含铜绿假单胞菌培养基中浸泡7 d的循环极化曲线参数
图6  CrCoNi中熵合金与316L不锈钢在含铜绿假单胞菌培养基中浸泡14 d并进行循环极化后的宏观形貌
图7  CrCoNi中熵合金及316L不锈钢在含铜绿假单胞菌培养基中浸泡7 d后的FESEM和CLSM像
图8  CrCoNi中熵合金及316L不锈钢在含铜绿假单胞菌培养基中浸泡14 d后的FESEM和CLSM像
图9  CrCoNi中熵合金与316L不锈钢在无菌及含铜绿假单胞菌培养基中浸泡14 d后最大点蚀坑的CLSM像
SampleAverage pit depthMaximum pit depth
CrCoNi MEA in sterile medium1.9±0.32.3
CrCoNi MEA in P. aeruginosa medium3.3±0.84.8
316L SS in P. aeruginosa medium3.9±0.95.8
表5  CrCoNi中熵合金与316L不锈钢在无菌及含铜绿假单胞菌培养基中浸泡14 d后的点蚀坑深度 (μm)
图10  CrCoNi中熵合金与316L不锈钢在无菌及含铜绿假单胞菌培养基中浸泡14 d后点蚀坑深度的累积概率
图11  CrCoNi中熵合金与316L不锈钢在无菌及含铜绿假单胞菌培养基中浸泡14 d后点蚀坑深度的Gumbel分布

Sample

icorrEcorrEb,10Eprot?E
nA·cm-2VVVV
CrCoNi MEA in sterile medium12.4-0.2890.627--
CrCoNi MEA in P. aeruginosa medium30.9-0.3100.4970.5980.026
316L SS in P. aeruginosa medium33.1-0.4970.646-0.1740.819
表4  CrCoNi中熵合金与316L不锈钢在无菌及含铜绿假单胞菌培养基中浸泡14 d的循环极化曲线参数

Sample

Metastable pitStable pit
αμαμ
CrCoNi MEA in sterile medium0.311.71--
CrCoNi MEA in P. aeruginosa medium0.662.931.102.37
316L SS in P. aeruginosa medium0.583.351.272.89
表6  CrCoNi中熵合金与316L不锈钢在无菌及含铜绿假单胞菌培养基中浸泡14 d后的Gumbel分布参数
图12  CrCoNi中熵合金与316L不锈钢在无菌及含铜绿假单胞菌培养基中浸泡14 d后形成稳态点蚀的概率分布
[1] ZhangY, ZuoT T, TangZ, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
[2] GaoM C, QiaoJ W. High-entropy alloys (HEAs) [J]. Metals, 2018, 8: 108
[3] JiangH, JiangL, QiaoD X, et al. Effect of niobium on microstructure and properties of the CoCrFeNbxNi high entropy alloys [J]. J. Mater. Sci. Technol., 2017, 33: 712
[4] ZhangC, ZhangF, DiaoH Y, et al. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys [J]. Mater. Des., 2016, 109: 425
[5] FengH, LiH B, WuX L, et al. Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy [J]. J. Mater. Sci. Technol., 2018, 34: 1781
[6] MiaoJ W, GuoT M, RenJ F, et al. Optimization of mechanical and tribological properties of FCC CrCoNi multi-principal element alloy with Mo addition [J]. Vacuum, 2018, 149: 324
[7] GludovatzB, HohenwarterA, ThurstonK V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
[8] Dan SathiarajG, SkrotzkiW, PukenasA, et al. Effect of annealing on the microstructure and texture of cold rolled CrCoNi medium-entropy alloy [J]. Intermetallics, 2018, 101: 87
[9] SloneC E, ChakrabortyS, MiaoJ, et al. Influence of deformation induced nanoscale twinning and FCC-HCP transformation on hardening and texture development in medium-entropy CrCoNi alloy [J]. Acta Mater., 2018, 158: 38
[10] MaY, YuanF P, YangM X, et al. Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures [J]. Acta Mater., 2018, 148: 407
[11] LiuX W, LaplancheG, KostkaA, et al. Columnar to equiaxed transition and grain refinement of cast CrCoNi medium-entropy alloy by microalloying with titanium and carbon [J]. J. Alloys Compd., 2019, 775: 1068
[12] XuD K, LiY C, SongF M, et al. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis [J]. Corros. Sci., 2013, 77: 385
[13] ZhangP Y, XuD K, LiY C, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm [J]. Bioelectrochemistry, 2015, 101: 14
[14] GuC X, XiaR, ZhuG J, et al. Study on corrosion of marine microbial of stainless steel [J]. Ship Eng., 2017, 39(10): 57
[14] 顾彩香, 夏 瑞, 朱冠军等. 不锈钢海洋微生物腐蚀研究 [J]. 船舶工程, 2017, 39(10): 57
[15] Wikie?A J, DatsenkoI, VeraM, et al. Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment [J]. Bioelectrochemistry, 2014, 97: 52
[16] XuD K, LiY C, GuT Y. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria [J]. Bioelectrochemistry, 2016, 110: 52
[17] ShiX B, XuD K, YanM C, et al. Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels [J]. Acta Metall. Sin., 2017, 53: 153
[17] 史显波, 徐大可, 闫茂成等. 新型含Cu管线钢的微生物腐蚀行为研究 [J]. 金属学报, 2017, 53: 153
[18] WangM F, LiuH F, XuL M. Applied research on the competitive growth of bacteria in biological control of MIC [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 159
[18] 汪梅芳, 刘宏芳, 许立铭. 细菌竞争生长在微生物腐蚀防治中的应用研究 [J]. 中国腐蚀与防护学报, 2004, 24: 159
[19] DongZ H, GuoX P, LiuH F, et al. Study on electrochemistry characteristics in MIC by wire beam electrodes [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 48
[19] 董泽华, 郭兴蓬, 刘宏芳等. 用丝束电极研究SRB微生物诱导腐蚀的电化学特征 [J]. 中国腐蚀与防护学报, 2002, 22: 48
[20] XiaJ, YangC G, XuD K, et al. Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm [J]. Biofouling, 2015, 31: 481
[21] LiH B, ZhouE Z, RenY B, et al. Investigation of microbiologically influenced corrosion of high nitrogen nickel-free stainless steel by Pseudomonas aeruginosa [J]. Corros. Sci., 2016, 111: 811
[22] LiH B, YangC T, ZhouE Z, et al. Microbiologically influenced corrosion behavior of S32654 super austenitic stainless steel in the presence of marine Pseudomonas aeruginosa biofilm [J]. J. Mater. Sci. Technol., 2017, 33: 1596
[23] ZhouE Z, LiH B, YangC T, et al. Accelerated corrosion of 2304 duplex stainless steel by marine Pseudomonas aeruginosa biofilm [J]. Int. Biodeterior. Biodegrad., 2018, 127: 1
[24] ZhaoY, ZhouE Z, XuD K, et al. Laboratory investigation of microbiologically influenced corrosion of 2205 duplex stainless steel by marine Pseudomonas aeruginosa biofilm using electrochemical noise [J]. Corros. Sci., 2018, 143: 281
[25] ShibataT. 1996 W.R.Whitney award lecture: Statistical and stochastic approaches to localized corrosion [J]. Corrosion, 1996, 52: 813
[26] MengG Z, WeiL Y, ZhangT, et al. Effect of microcrystallization on pitting corrosion of pure aluminium [J]. Corros. Sci., 2009, 51: 2151
[27] GholamiM, HoseinpoorM, MoayedM H. A statistical study on the effect of annealing temperature on pitting corrosion resistance of 2205 duplex stainless steel [J]. Corros. Sci., 2015, 94: 156
[28] ZhangT, ChenC M, ShaoY W, et al. Corrosion of pure magnesium under thin electrolyte layers [J]. Electrochim. Acta, 2008, 53: 7921
[29] ZhangT, LiuX L, ShaoY W, et al. Electrochemical noise analysis on the pit corrosion susceptibility of Mg-10Gd-2Y-0.5Zr, AZ91D alloy and pure magnesium using stochastic model [J]. Corros. Sci., 2008, 50: 3500
[30] MoradiM, SongZ L, YangL J, et al. Effect of marine Pseudoalteromonas sp. on the microstructure and corrosion behaviour of 2205 duplex stainless steel [J]. Corros. Sci., 2014, 84: 103
[31] VasylievG S. The influence of flow rate on corrosion of mild steel in hot tap water [J]. Corros. Sci., 2015, 98: 33
[32] AljohaniT A, HaydenB E. A simultaneous screening of the corrosion resistance of Ni-W thin film alloys [J]. Electrochim. Acta, 2013, 111: 930
[33] ZouY, WangJ, ZhengY Y. Electrochemical techniques for determining corrosion rate of rusted steel in seawater [J]. Corros. Sci., 2011, 53: 208
[34] MuX, WeiJ, DongJ H, et al. In situ corrosion monitoring of mild steel in a simulated tidal zone without marine fouling attachment by electrochemical impedance spectroscopy [J]. J. Mater. Sci. Technol., 2014, 30: 1043
[35] YuL B, YanM C, MaJ, et al. Sulfate reducing bacteria corrosion of pipeline steel in Fe-rich red soil [J]. Acta Metall. Sin., 2017, 53: 1568
[35] 于利宝, 闫茂成, 马 健等. 富Fe红壤中管线钢的硫酸盐还原菌腐蚀行为 [J]. 金属学报, 2017, 53: 1568
[36] YuanS J, ChoongA M F, PehkonenS O. The influence of the marine aerobic Pseudomonas strain on the corrosion of 70/30 Cu-Ni alloy [J]. Corros. Sci., 2007, 49: 4352
[37] LiY C, XuD K, ChenC F, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review [J]. J. Mater. Sci. Technol., 2018, 34: 1713
[38] HuangY, ZhouE Z, JiangC Y, et al. Endogenous phenazine-1-carboxamide encoding gene PhzH regulated the extracellular electron transfer in biocorrosion of stainless steel by marine Pseudomonas aeruginosa [J]. Electrochem. Commun., 2018, 94: 9
[39] VenzlaffH, EnningD, SrinivasanJ, et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria [J]. Corros. Sci., 2013, 66: 88
[40] XuD K, GuT Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibriovulgaris biofilm [J]. Int. Biodeterior. Biodegrad., 2014, 91: 74
[41] ParkJ J, PyunS I. Stochastic approach to the pit growth kinetics of Inconel alloy 600 in Cl- ion-containing thiosulphate solution at temperatures 25—150 ℃ by analysis of the potentiostatic current transients [J]. Corros. Sci., 2004, 46: 285
[1] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[4] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[5] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[6] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[7] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[8] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[9] 舒韵, 闫茂成, 魏英华, 刘福春, 韩恩厚, 柯伟. X80管线钢表面SRB生物膜特征及腐蚀行为[J]. 金属学报, 2018, 54(10): 1408-1416.
[10] 史显波,徐大可,闫茂成,严伟,单以银,杨柯. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53(2): 153-162.
[11] 于利宝, 闫茂成, 马健, 吴明浩, 舒韵, 孙成, 许进, 于长坤, 卿永长. 富Fe红壤中管线钢的硫酸盐还原菌腐蚀行为[J]. 金属学报, 2017, 53(12): 1568-1578.
[12] 卿永长,杨志炜,鲜俊,许进,闫茂成,吴堂清,于长坤,于利宝,孙成. 交流电和微生物共同作用下Q235钢的腐蚀行为*[J]. 金属学报, 2016, 52(9): 1142-1152.
[13] 范林,丁康康,郭为民,张彭辉,许立坤. 静水压力和预应力对新型Ni-Cr-Mo-V高强钢腐蚀行为的影响*[J]. 金属学报, 2016, 52(6): 679-688.
[14] 何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.
[15] 杨建海,张玉祥,葛利玲,陈家照,张鑫. 2A14铝合金混合表面纳米化对电化学腐蚀行为的影响*[J]. 金属学报, 2016, 52(11): 1413-1422.