Please wait a minute...
金属学报  2011, Vol. 47 Issue (7): 839-846    DOI: 10.3724/SP.J.1037.2011.00213
  论文 本期目录 | 过刊浏览 |
690TT合金划痕显微组织及划伤诱发的应力腐蚀
孟凡江1), 王俭秋1), 韩恩厚1), 庄子哲雄2), 柯伟1)
1) 中国科学院金属研究所腐蚀与防护国家重点实验室, 沈阳 110016
2) 日本东北大学断裂与可靠性研究中心, 仙台 980-8579
MICROSTRUCTURE NEAR SCRATCH ON ALLOY 690TT AND STRESS CORROSION INDUCED BY SCRATCHING
MENG Fanjiang1), WANG Jianqiu1), HAN En-Hou1), SHOJI Testuo2), KE Wei1)
1) State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Fracture and Reliability Research Institute, Tohoku University,  Sendai 980-8579, Japan
引用本文:

孟凡江 王俭秋 韩恩厚 庄子哲雄 柯伟. 690TT合金划痕显微组织及划伤诱发的应力腐蚀[J]. 金属学报, 2011, 47(7): 839-846.
, . MICROSTRUCTURE NEAR SCRATCH ON ALLOY 690TT AND STRESS CORROSION INDUCED BY SCRATCHING[J]. Acta Metall Sin, 2011, 47(7): 839-846.

全文: PDF(1761 KB)  
摘要: 测试表明, 690TT合金划痕周围形成了加工硬化区, 范围可达100 μm. TEM及EBSD-OIM组织观察发现, 划痕沟槽处的基体组织出现了一定程度的纳米化. 在330 ℃碱溶液中的浸泡实验表明, 划伤诱发了690TT合金应力腐蚀裂纹的萌生和扩展, 划伤过程中形成的变形晶界、孪晶界以及产生的微观裂纹成为应力腐蚀裂纹优先萌生的位置. Pb的存在使氧化膜变得疏松, 加速了基体的溶解和氧化. 随着溶液中Pb含量的增加, 划伤诱发的应力腐蚀裂纹长度随之增加. 690TT合金表面划伤严重降低了材料抵抗应力腐蚀开裂的能力.
关键词 镍基690合金表面划伤显微组织应力腐蚀开裂    
Abstract:The microstructure and stress corrosion cracking (SCC) behavior of scratched zone on alloy 690TT were studied by using microhardness, TEM, EBSD-OIM and immersion experiment in caustic solution. It was found that a deformed hardening layer with a dimension range of 100 $\mu$m was produced near the scratch. TEM and EBSD-OIM observations showed that the grains at shallow surface of scratch groove were refined to nano-size. SCC tests for scratched alloy 690TT were performed in caustic solution at high temperature with or without addition of lead oxides. The results showed that SCC cracks initiated and propagated at scratch banks and scratch grooves. Grain boundaries, twin boundaries deformed and microcracks produced during scratching process are preferential sites for SCC. The oxide films formed on scratch groove were loosed by lead. The SCC crack length increased with increase of lead content. Scratched alloy 690TT is susceptible to SCC.
Key wordsNi base alloy 690    surface scratch    microstructure    stress corrosion cracking
收稿日期: 2011-04-06     
基金资助:

国家重点基础研究发展计划资助项目2006CB605000

作者简介: 孟凡江, 男, 1982年生, 博士生
[1] Ding X S. Nucl Power Plants, 2003; 4: 11

(丁训慎. 核电站, 2003; 4: 11)

[2] Blanchet J, Coriou H, Grall L, Mahieu C, Otter C, Turluer G. In: Staehle R W, Hochmann J, McCright R D, Slater J E, eds., Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, No.5, Houston: NACE, 1977: 1149

[3] Staehle R W, Gorman J A. Corrosion, 2003; 59: 931

[4] Laboratory Evaluation of Steam Generator Tube Sections from the McGuire Nuclear Station. Babcock & Wilcox, Report RDD:91:5087–01:01, October, 1990: 1

[5] Examination of Steam Generator Tube Sections from the McGuire Unit 2 Nuclear Station. Babcock & Wilcox–NESI, Report LTC:93:0021–01:01, January, 1993: 1

[6] Analysis of Steam Generator Tubing from Oconee Unit 1 Nuclear Station. EPRI report TR–106484

[7] Oconee 2 Steam Generator Tube Examination. EPRI report TR–106863

[8] MacDonald P E, Shah V N,Ward LW, Ellison P G. Steam Generator Tube Failures. NUREG/CR–6365

[9] Rochester D P. Water Chemistry of Nuclear Reactor Systems. 1st Ed., London: Thomas Telford Publishing, 2001: 1

[10] Staehle R W, Gorman J A. Corrosion, 2004; 60: 115

[11] Staehle R W, Gorman J A. Corrosion, 2004; 60: 5

[12] Meng F J, Wang J Q, Han E H, Ke W. Corros Sci, 2009; 51: 2761

[13] Tkaya M B, Zidi M, Mezlini S, Zahouani H, Kapsa P. Mater Des, 2008; 29: 98

[14] Tao N R, Wang Z B, Tong W P, Sui M L, Lu J, Lu K. Acta Mater, 2002; 50: 4603

[15] Symons D. Metall Mater Trans, 1997; 28A: 655

[16] Tao N R, Zhang H W, Lu J, Lu K. Metall Trans, 2003; 44: 1919

[17] Hwang S, Kim H, Lim Y, Kim Y, Thomas L. Corros Sci, 2007; 49: 3797

[18] Hwang S, Kim H, Lee D, Kim U, Kim J. J Nucl Mater, 1999; 275: 28

[19] Lumsden J, McIlree A, Eaker R, Thompson R, Slosnerick S. Proc 12th Int Conf Environmental Degradation of Materials in Nuclear Power System–Water Reactors, Salt Lake City, Utah, USA, 2005: 1

[20] Meng F J, Han E H, Wang J Q, Zhang Z M, Ke W. Electrochim Acta, 2011; 56: 1781
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[8] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[9] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[10] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[11] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[12] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[13] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[14] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[15] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.