Please wait a minute...
金属学报  2010, Vol. 46 Issue (10): 1230-1236    DOI: 10.3724/SP.J.1037.2010.00304
  论文 本期目录 | 过刊浏览 |
高锰TRIP钢的形变诱导马氏体相变及加工硬化行为
张维娜,刘振宇,王国栋
东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
MARTENSITIC TRANSFORMATION INDUCED BY DEFORMATION AND WORK–HARDENING BEHAVIOR OF HIGH MANGANESE TRIP STEELS
ZHANG Weina, LIU Zhengyu, WANG Guodong
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
引用本文:

张维娜 刘振宇 王国栋. 高锰TRIP钢的形变诱导马氏体相变及加工硬化行为[J]. 金属学报, 2010, 46(10): 1230-1236.
, , . MARTENSITIC TRANSFORMATION INDUCED BY DEFORMATION AND WORK–HARDENING BEHAVIOR OF HIGH MANGANESE TRIP STEELS[J]. Acta Metall Sin, 2010, 46(10): 1230-1236.

全文: PDF(2690 KB)  
摘要: 对2种不同成分的高锰TRIP钢(15Mn-4Si-2Al和20Mn-4Si-2Al)热轧后进行热处理实验.结果表明, 增加固溶处理的保温时间, 可以获得不同的显微组织并提高高锰TRIP钢的强塑积. 分析了不同的热处理条件下, 2种高Mn钢在拉伸变形过程中加工硬化速率随真应变的变化关系. 利用TEM技术研究了高锰TRIP钢中马氏体相变的特点, 确定相变途径为γ→ε→α'和γ→α', 鉴别出ε-M和α'-M 2种马氏体的组织及形貌特点, 确定γ与α'马氏体之间存在K-S取向关系; γ和ε马氏体之间存在S-N(Shoji-Nishiyama)取向关系; ε马氏体与α'马氏体之间存在Burgers取向关系.
关键词 高Mn钢 TRIP效应 奥氏体 马氏体相变 加工硬化行为    
Abstract:High manganese steels containing 15%—30% (mass fractions) Mn and additions of (2%—4%)Si and (2%—4%)Al exhibit superior ductility and extraordinary strengthening behavior during plastic deformation, due to extensive twin formation under mechanical load (the so–called TWIP effect–twinning induced plasticity effect) or the ε–martensite and α′–martensite transformation (the so–called TRIP effect–transformation induced plasticity effect). In this paper, different heat treatments were carried out for high–manganese TRIP steels of Fe–15Mn–4Si–2Al and Fe–20Mn–4Si–2Al, and the uniaxial tensile tests were performed. The results show that increase of holding time at 1373 K can increase elongation and strength. Through the analysis of stress–strain curves, the relationship between mechanical properties and deformation mechanism was established. The dependence of phase compositions in high manganese TRIP steels on the heat treatment parameters has been studied by metallographic characterization and XRD pattern. The transformation routes of   γ→ ε→ α′ and γ → α′ were observed by TEM, which dominates the TRIP effects. Microstructural characterization of  ε–martensite and α′–martensite indicated that α′–martensite held the K–S orientation relationship with austenite, and the S–N (Shoji–Nishiyama) orientation relationship was observed between austenite and ε–martensite, whereas ε–martensite and α′–martensite held the Burgers orientation relationship. Deformation behavior of the two kinds of high Mn steels has been clarified through the relationship between work hardening rate of dσ/dε and true strain based on the true stress–true stain curves. It has been found that continuous transformation from austenite or ε–martensite to α′–martensite can take place during deformation, which increases the work–hardening rate to improve the TRIP effect.
Key wordshigh manganese steel    TRIP effect    autenite    martensitic transformation    strain hardening behavior
收稿日期: 2010-06-28     
基金资助:

国家自然科学基金项目资助50873141

作者简介: 张维娜, 女, 1982年生, 博士
[1]Gr?ssel O, Krüger L, Frommeyer G.Meyer L W[J].Int J Plast,2000,16:1391- [2]Frommeyer G, Brux U, Neumann P.[J].ISIJ Int,2003,43:438- [3]Mi Z L, Tang D, Yan L.[J].J Mater Sci Technol,2005,21:451- [4]Barbier D, Gey N, Allain S, Bozzolo N, Humbert M.[J].Mater Sci Eng,2009,A500:196- [5]Yang P, Xie Q, Meng L, Ding H, Tang Z.[J].Scr Mater,2006,55:629- [6]Li W, Tang Z Y, Wang M, Ding H, Yang P.Iron Steel, 2007;42: 71 (李卫,唐正友,王玫,丁桦,杨平[J].钢铁,2007,42:71- [7]Ding H, Tang Z Y, Li W, Li W, Wang M, Song D.[J].J Iron Steel Res,2006,13:66-70 [8]Wang S H, Liu Z Y, Zhang W N, Wang G D.[J].Acta Metall Sin,2009,45:573- [9]Wang S H, Liu Z Y, Wang G D.[J].Acta Metall Sin,2009,45:1083- [10]Kitahara H, Ueji R,Ueda M, Tsuji N, Minamino Y.[J].Mater Charact,2005,54:378- [11]Wu X, Tao N, Hong Y, Lu J, Lu K.[J].Scr Mater,2005,52:547- [12]Huang B X, Wang X D, Rong Y H, Wang L, Jin L.[J].Mater Sci Eng,2006,A438-440:306- [13]Farzad H, Sirous A.[J].Metall Mate trans,2008,39A:294- [14]Ehab E D, Surya R.K, Roger D[J].D. Int J Plast,2001,17:1245- [15]Jing C N, Wang Z C.[J].Special Steel,2004,25:1- [16]Fujiata H;Katayama T.[J].Mater Trans JIM,1992,33:243- [17]Hamada A S, Karjalainen L P, Somani M C.[J].Mater Sci Eng A,2007,467:114- [18]Hanzaki A Z, Hodgson P D, Yue S.[J].ISIJ Int,1997,37:583-
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[3] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[4] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[5] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[6] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[7] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[8] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[9] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[10] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[11] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[12] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[13] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[14] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[15] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.