Please wait a minute...
金属学报  2010, Vol. 46 Issue (10): 1237-1243    DOI: 10.3724/SP.J.1037.2010.00228
  论文 本期目录 | 过刊浏览 |
6082铝合金CCT图的测定及应用
李红英1,赵延阔1,唐宜2,王晓峰1
1.中南大学材料科学与工程学院, 长沙 410083
2.三一重工股份有限公司泵送研究院, 长沙 410100
DETERMINATION AND APPLICATION OF CCT DIAGRAM FOR 6082 ALUMINUM ALLOY
LI Hongying 1, ZHAO Yankuo 1, TANG Yi 2, WANG Xiaofeng 1
1. School of Materials Science and Engineering, Central South University, Changsha 410083
2. Institute of Pumping, SANY Heavy Industry Co., Ltd, Changsha, 410083
引用本文:

李红英 赵延阔 唐宜 王晓峰. 6082铝合金CCT图的测定及应用[J]. 金属学报, 2010, 46(10): 1237-1243.
, , , . DETERMINATION AND APPLICATION OF CCT DIAGRAM FOR 6082 ALUMINUM ALLOY[J]. Acta Metall Sin, 2010, 46(10): 1237-1243.

全文: PDF(1299 KB)  
摘要: 采用动态电阻法测得6082铝合金连续冷却过程的电阻-温度曲线, 根据曲线斜率变化判断相变点及临界冷却速率, 绘制出该合金的连续冷却转变曲线(CCT图), 通过TEM对组织转变的观察验证了所测CCT图, 模拟实际生产条件对CCT图进行应用研究.结果表明, 动态电阻法测得的CCT图是可信的; 随着冷却速率的增加, 相变开始温度先降低, 在达到某冷却速率时骤升, 然后继续降低; 相变主要集中在220-400℃的温度区间发生, 抑制相变发生的临界冷却速率在16-34℃/s之间;20 mm厚实验合金板适宜采用60℃水淬, 淬火转移时间较长, 利用所测CCT图可以制定分级淬火工艺, 从而在最大限度减小淬火应力的同时抑制平衡相的析出.
关键词 6082铝合金 CCT图 动态电阻 相变 冷却速率    
Abstract:Electrical resistance–temperature curves of 6082 aluminum alloy at various cooling rates during continuous cooling was obtained by in–situ resistance measurement. Phase transformation start and finish temperatures were ascertained by the slope change of resistance–temperature curves. Continuous cooling transformation (CCT) diagram for 6082 aluminum alloy was plotted. Microstructure evolution during cooling was examined by TEM observation to verify the validity of the CCT diagram. Applications of the CCT diagram were studied in this work. The results show that the CCT diagram obtained by in situ resistance measurement is credible. Resistance–temperature curves corresponding to different cooling rates depart from straight line to different directions. The phase transformation start and finish temperature decreases with the increase of cooling rates when the cooling rate is slow, but as the cooling rate increases to a certain rate the phase transformation start temperature increases suddenly and then decreases continously. Phase transformations mainly take place between 220 and 400 ℃. Critical cooling rate for preventing phase transformation is between 16—34 ℃/s. For plates 20 mm in thickness is proper to quench by 60 ℃ water. A step–quench process can be established by the tested CCT diagram to decrease quenching stress utmost and inhibit equilirium phase precipitation at the same time.
Key words6082 aluminum alloy    CCT diagram    in situ electrical resistance    phase transformation    cooling rate
收稿日期: 2010-05-12     
ZTFLH: 

TG151

 
作者简介: 李红英, 女, 1963年生, 博士, 教授
[1] Fink W L, Willey L A. Trans. Am Inst Mining Metall Eng, 1974: 1 [2] Davydov V G, Ber L B, Kaputkin E Ya , Komov V I, Ukolova O G, Lukina E A, Mater Sci Eng A, 2000; 280: 76 [3] Archambault P, Godard D, Scripta Mater, 2000; 42:675 [4] Davydov V G, Ber LB, Mater Sci Forum, 2002; 396-402: 1169 [5] Liu S D, Zhong Q M, Zhang Y, Liu W J, Zhang X M, Deng Y L. Mater Des, 2010; 21:3116 [6] Herding T, Kessler O, Hoffmann F, Mayr P. Mater Sci Forum, 2002; 869: 396 [7] Kessler O, Von Bargen R, Hoffmann F, Zoch H W. Mater Sci Forum, 2006; 519-521: 1467 [8] Milkereita B, Kessler O, Schick C, Thermochim Acta, 2009; 492: 73 [9] Furlani A M,Stipcich M,Romero R. Mater Sci Eng A, 2005; 392: 386 [10] Teixeira J D C, Appolaire B, Aeby-Gautier E, Denis S, Cailletaud G, Spaeth N. Mater Sci Eng A, 2007; 448: 135 [11] Matsumoto H. J Alloys Compd. 2004; 368: 182 [12] Li H Y, Geng J F, Zheng Z Q, Wang C J, Su Y, Hu B. T Nonferr Metal Soc, 2006; 16: 1110 [13] Li H Y, Tang Y, Zeng Z D, Wang F.Y, Sun Y. Chin J Nonferrous Met, 2008; 18: 1613 (李红英,唐宜,曾再得,王法云,孙远. 中国有色金属学报, 2008; 18: 1613) [14] Li H Y, Wang X F, Tang Y, Deng Y Z, Huang Y, Sun Y, Wang F Y. Chin J Nonferrous Met, 2010; 20: 640 (李红英,王晓峰,唐宜,邓云喆,黄愉,孙远,王法云. 中国有色金属学报, 2010; 20: 640) [15] Li H, Pan D Z, Wang Z X, Zheng Z Q. Acta Metall Sin, 2010; 46: 494 (李海, 潘道召, 王芝秀, 郑子樵. 金属学报, 2010; 46: 494) [16] Fukui K, Takeda M, Endo T. Mater Lett, 2005; 59: 1444 [17] Zhang H, Li L X, Yuan D, Peng D S. Mater Charact, 2007; 58:168 [18] Morgeneyer T F, Starink M J, Wang S C, Sinclair I. Acta Mater, 2008; 56: 2872 [19] Long Y. Physical Properties of Materials. Changsha: Central South University Press, 2009: 58 (龙毅. 材料物理性能. 长沙: 中南大学出版社, 2009: 58)
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[6] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[7] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[8] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[9] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[10] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[11] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[12] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[13] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[14] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[15] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.