|
|
高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变 |
周红伟1, 高建兵2, 沈加明1, 赵伟3, 白凤梅3( ), 何宜柱1 |
1.安徽工业大学 材料科学与工程学院 先进金属材料绿色制备与表面技术教育部重点实验室 马鞍山 243032 2.太原钢铁(集团)有限公司 先进不锈钢材料国家重点实验室 太原 030003 3.安徽工业大学 冶金工程学院 冶金工程与资源综合利用安徽省重点实验室 马鞍山 243032 |
|
Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature |
ZHOU Hongwei1, GAO Jianbing2, SHEN Jiaming1, ZHAO Wei3, BAI Fengmei3( ), HE Yizhu1 |
1.Key Laboratory of Green Preparation and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243032, China 2.State Key Laboratory of Advanced Stainless Steel Materials, Taiyuan Iron and Steel (Group) Co., Ltd., Taiyuan 030003, China 3.Anhui Key Laboratory of Metallurgical Engineering and Comprehensive Utilization of Resources, School of Metallergical Engineering, Anhui University of Technology, Ma'anshan 243032, China |
引用本文:
周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
Hongwei ZHOU,
Jianbing GAO,
Jiaming SHEN,
Wei ZHAO,
Fengmei BAI,
Yizhu HE.
Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. Acta Metall Sin, 2022, 58(8): 1013-1023.
1 |
Liu Z D, Chen Z Z, He X K, et al. Systematical innovation of heat resistant materials used for 630-700oC advanced ultra-supercritical (A-USC) fossil fired boilers [J]. Acta Metall. Sin., 2020, 56: 539
|
1 |
刘正东, 陈正宗, 何西扣 等. 630~700℃超超临界燃煤电站耐热管及其制造技术进展 [J]. 金属学报, 2020, 56: 539
doi: 10.11900/0412.1961.2019.00419
|
2 |
Fang X D, Bao H S, Li Y, et al. Development of model heat resisting seamless tube C-HRA-5 for ultra-supercritical power plant boiler [J]. Iron Steel, 2020, 55(2): 119
|
2 |
方旭东, 包汉生, 李 阳 等. 超超临界锅炉用新型耐热无缝管C-HRA-5的开发 [J]. 钢铁, 2020, 55(2): 119
|
3 |
Zhu C Z, Yuan Y, Yin H F, et al. Research progress of austenitic heat resistant steel Sanicro 25 used in ultra supercritical unit [J]. Mater. Rev., 2017, 31(13): 78
|
3 |
朱传志, 袁 勇, 尹宏飞 等. 超超临界机组用Sanicro 25耐热钢研究进展 [J]. 材料导报, 2017, 31(13): 78
|
4 |
Wang L, Fang X D, Wang J, et al. The precipitation control of grain boundary M23C6 phases and the ductility improvement in aged 22Cr-25Ni-WCuNbN austenitic stainless steel by Co addition [J]. Mater. Lett., 2020, 264: 127348
doi: 10.1016/j.matlet.2020.127348
|
5 |
Hu C L, Xia S, Li H, et al. Effect of grain boundary network on the intergranular stress corrosion cracking of 304 stainless steel [J]. Acta Metall. Sin., 2011, 47: 939
|
5 |
胡长亮, 夏 爽, 李 慧 等. 晶界网络特征对304不锈钢晶间应力腐蚀开裂的影响 [J]. 金属学报, 2011, 47: 939
|
6 |
Trillo E A, Murr L E. TEM investigation of M23C6 carbide precipitation behaviour on varying grain boundary misorientations in 304 stainless steels [J]. J. Mater. Sci., 1998, 33: 1263
doi: 10.1023/A:1004390029071
|
7 |
Shi F, Gao R H, Guan X J, et al. Application of grain boundary engineering to improve intergranular corrosion resistance in a Fe-Cr-Mn-Mo-N high-nitrogen and nickel-free austenitic stainless steel [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 789
doi: 10.1007/s40195-020-01000-8
|
8 |
Guan X J, Shi F, Jia Z P, et al. Grain boundary engineering of AL6XN super-austenitic stainless steel: distinctive effects of planar-slip dislocations and deformation twins [J]. Mater. Charact., 2020, 170: 110689
doi: 10.1016/j.matchar.2020.110689
|
9 |
Yang H, Xia S, Zhang Z L, et al. Improving the intergranular corrosion resistance of the weld heat-affected zone by grain boundary engineering in 304 austenitic stainless steel [J]. Acta Metall. Sin., 2015, 51: 333
|
9 |
杨 辉, 夏 爽, 张子龙 等. 晶界工程对于改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响 [J]. 金属学报, 2015, 51: 333
|
10 |
Ren S, Sun Z Y, Xu Z Z, et al. Effects of twins and precipitates at twin boundaries on Hall-Petch relation in high nitrogen stainless steel [J]. J. Mater. Res., 2018, 33: 1764
doi: 10.1557/jmr.2018.138
|
11 |
Mahajan S, Pande C S, Imam M A, et al. Formation of annealing twins in f.c.c. crystals [J]. Acta Mater., 1997, 45: 2633
doi: 10.1016/S1359-6454(96)00336-9
|
12 |
Zhang Z F, Shao C W, Wang B, et al. Tensile and fatigue properties and deformation mechanisms of twinning-induced plasticity steels [J]. Acta Metall. Sin., 2020, 56: 476
|
12 |
张哲峰, 邵琛玮, 王 斌 等. 孪生诱发塑性钢拉伸与疲劳性能及变形机制 [J]. 金属学报, 2020, 56: 476
doi: 10.11900/0412.1961.2019.00389
|
13 |
Lall A, Sarkar S, Ding R G, et al. Performance of Alloy 709 under creep-fatigue at various dwell times [J]. Mater. Sci. Eng., 2019, A761: 138028
|
14 |
Hong H U, Rho B S, Nam S W. Correlation of the M23C6 precipitation morphology with grain boundary characteristics in austenitic stainless steel [J]. Mater. Sci. Eng., 2001, A318: 285
|
15 |
Sakaguchi N, Ohguchi Y, Shibayama T, et al. Surface cracking on Σ3, Σ9 CSL and random grain boundaries in helium implanted 316L austenitic stainless steel [J]. J. Nucl. Mater., 2013, 432: 23
doi: 10.1016/j.jnucmat.2012.08.019
|
16 |
Guan X J, Shi F, Ji H M, et al. A possibility to synchronously improve the high-temperature strength and ductility in face-centered cubic metals through grain boundary engineering [J]. Scr. Mater., 2020, 187: 216
doi: 10.1016/j.scriptamat.2020.06.026
|
17 |
Zhang X Y, Li D F, Guo S L, et al. Influence of annealing time on Σ3 boundary and Σ9 boundary evolutions in hastelloy C-276 Alloy [J]. Rare Met. Mater. Eng., 2016, 45: 2253
doi: 10.1016/S1875-5372(17)30012-7
|
18 |
Zheng H F, Shi M J, Mao Q, et al. Chromium concentration near grain boundaries with various characters in Inconel alloy 600 [J]. Chin. J. Mater. Res., 2020, 34: 511
|
18 |
郑合凤, 师梦杰, 毛 强 等. Inconel 600合金中不同类型晶界处铬的浓度 [J]. 材料研究学报, 2020, 34: 511
doi: 10.11901/1005.3093.2019.509
|
19 |
Li H Z, Jing H Y, Xu L Y, et al. Microstructure mechanism, cyclic deformation behavior of an Fe-Ni-Cr alloy considering non-masing behavior [J]. Int. J. Fatigue, 2019, 127: 537
doi: 10.1016/j.ijfatigue.2019.06.035
|
20 |
Sarkar A, Dash M K, Nagesha A, et al. EBSD based studies on various modes of cyclic deformation at 923 K in a type 316LN stainless steel [J]. Mater. Sci. Eng., 2018, A723: 229
|
21 |
Zhang P, Zhang Z J, Li L L, et al. Twin boundary: Stronger or weaker interface to resist fatigue cracking? [J]. Scr. Mater., 2012, 66: 854
doi: 10.1016/j.scriptamat.2012.01.028
|
22 |
Wang J, Li N, Anderoglu O, et al. Detwinning mechanisms for growth twins in face-centered cubic metals [J]. Acta Mater., 2010, 58: 2262
doi: 10.1016/j.actamat.2009.12.013
|
23 |
Bai J S, Lu Q H, Lu L. Detwinning behavior induced by local shear strain in nanotwinned Cu [J]. Acta Metall. Sin., 2016, 52: 491
|
23 |
白敬胜, 卢秋虹, 卢 磊. 纳米孪晶Cu中局部剪切应变诱导的退孪生行为 [J]. 金属学报, 2016, 52: 491
doi: 10.11900/0412.1961.2015.00503
|
24 |
Li Q, Song J, Liu G S, et al. Migration kinetics of twinning disconnections in nanotwinned Cu: An in situ HRTEM deformation study [J]. Scripta Mater., 2021, 194: 113621
doi: 10.1016/j.scriptamat.2020.11.006
|
25 |
Ni S, Liao X Z, Zhu Y T. Effect of severe plastic deformation on the structure and mechanical properties of bulk nanocrystalline metals [J]. Acta Metall. Sin., 2014, 50: 156
|
25 |
倪 颂, 廖晓舟, 朱运田. 剧烈塑性变形对块体纳米金属材料结构和力学性能的影响 [J]. 金属学报, 2014, 50: 156
|
26 |
He W J, Hu R. Portevin-Le Chatelier effect, twinning-detwinning and disordering in an aged Ni-Cr-Mo alloy during large plastic deformation [J]. Mater. Sci. Eng., 2021, A803: 140506
|
27 |
Zhou H W, Zhang H Y, Bai F M, et al. Planar dislocation structure during creep-fatigue interactions of TP347H heat-resistant austenitic steel at 600oC [J]. Mater. Sci. Eng., 2020, A779: 139141
|
28 |
Jang M H, Kang J Y, Jang J H, et al. Microstructure control to improve creep strength of alumina-forming austenitic heat-resistant steel by pre-strain [J]. Mater. Charact., 2018, 137: 1
doi: 10.1016/j.matchar.2018.01.005
|
29 |
Heczko M, Polák J, Kruml T. Microstructure and dislocation arrangements in Sanicro 25 steel fatigued at ambient and elevated temperatures [J]. Mater. Sci. Eng., 2017, A680: 168
|
30 |
Guo Q Y, Li Y M, Chen B, et al. Effect of high-temperature ageing on microstructure and creep properties of S31042 heat-resistant steel [J]. Acta Metall. Sin., 2021, 57: 82
|
30 |
郭倩颖, 李彦默, 陈 斌 等. 高温时效处理对S31042耐热钢组织和蠕变性能的影响 [J]. 金属学报, 2021, 57: 82
doi: 10.11900/0412.1961.2020.00109
|
31 |
Zhou R Y, Zhu L H, Liu Y Y, et al. Precipitates and precipitation strengthening of sanicro 25 welded joint base metal crept at 973 K [J]. Steel Res. Int., 2017, 88: 1600414
doi: 10.1002/srin.201600414
|
32 |
Peng Z F, Ren W, Yang C, et al. Relationship between the evolution of phase parameters of grain boundary M23C6 and embrittlement of HR3C super-heater tubes in service [J]. Acta Metall. Sin., 2015, 51: 1325
|
32 |
彭志方, 任 文, 杨 超 等. HR3C钢运行过热器管的脆化与晶界M23C6相参量演化的关系 [J]. 金属学报, 2015, 51: 1325
|
33 |
Zhang Z, Hu Z F, Tu H Y, et al. Microstructure evolution in HR3C austenitic steel during long-term creep at 650oC [J]. Mater. Sci. Eng., 2017, A681: 74
|
34 |
Zhao W, Zhou H W, Fang L W, et al. Study on diversified carbide precipitation in high-strength low-alloy steel during tempering [J]. Steel Res. Int., 2021, 92: 2000723
doi: 10.1002/srin.202000723
|
35 |
Kaneko K, Fukunaga T, Yamada K, et al. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel [J]. Scr. Mater., 2011, 65: 509
doi: 10.1016/j.scriptamat.2011.06.010
|
36 |
Wen H Y, Zhao B B, Dong X P, et al. How big is the difference between precipitation at twin boundary and normal grain boundary in an alumina-forming austenitic steel during creep at 700oC? [J]. Mater. Lett., 2020, 274: 128019
doi: 10.1016/j.matlet.2020.128019
|
37 |
Calmunger M, Chai G C, Eriksson R, et al. Characterization of austenitic stainless steels deformed at elevated temperature [J]. Metall. Mater. Trans., 2017, 48A: 4525
|
38 |
Zhou H W, Bai F M, Yang L, et al. Mechanism of dynamic strain aging in a niobium-stabilized austenitic stainless steel [J]. Metall. Mater. Trans., 2018, 49A: 1202
|
39 |
Zhou H W, He Y Z, Cui M, et al. Dependence of dynamic strain ageing on strain amplitudes during the low-cycle fatigue of TP347H austenitic stainless steel at 550oC [J]. Int. J. Fatigue, 2013, 56: 1
doi: 10.1016/j.ijfatigue.2013.07.010
|
40 |
Song T, Wang Z W. Microstructure and properties of TP347HFG steel after high temperature service [J]. Heat Treat. Met., 2020, 45(4): 60
|
40 |
宋 涛, 王志武. 高温服役后TP347HFG钢的组织与性能 [J]. 金属热处理, 2020, 45(4): 60
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|