Please wait a minute...
金属学报  2022, Vol. 58 Issue (8): 1013-1023    DOI: 10.11900/0412.1961.2021.00385
  研究论文 本期目录 | 过刊浏览 |
高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变
周红伟1, 高建兵2, 沈加明1, 赵伟3, 白凤梅3(), 何宜柱1
1.安徽工业大学 材料科学与工程学院 先进金属材料绿色制备与表面技术教育部重点实验室 马鞍山 243032
2.太原钢铁(集团)有限公司 先进不锈钢材料国家重点实验室 太原 030003
3.安徽工业大学 冶金工程学院 冶金工程与资源综合利用安徽省重点实验室 马鞍山 243032
Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature
ZHOU Hongwei1, GAO Jianbing2, SHEN Jiaming1, ZHAO Wei3, BAI Fengmei3(), HE Yizhu1
1.Key Laboratory of Green Preparation and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243032, China
2.State Key Laboratory of Advanced Stainless Steel Materials, Taiyuan Iron and Steel (Group) Co., Ltd., Taiyuan 030003, China
3.Anhui Key Laboratory of Metallurgical Engineering and Comprehensive Utilization of Resources, School of Metallergical Engineering, Anhui University of Technology, Ma'anshan 243032, China
引用本文:

周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
Hongwei ZHOU, Jianbing GAO, Jiaming SHEN, Wei ZHAO, Fengmei BAI, Yizhu HE. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. Acta Metall Sin, 2022, 58(8): 1013-1023.

全文: PDF(4354 KB)   HTML
摘要: 

研究了先进超超临界燃煤机组用新型奥氏体耐热钢C-HRA-5在700℃低周疲劳下退孪生行为,利用SEM、EBSD和TEM等对孪晶界(TBs)的演变、退孪生机制及残留TBs对疲劳裂纹的影响进行了分析。结果表明,C-HRA-5钢经高温固溶处理后,低Σ重合位置点阵(CSL)晶界比例达到69%,以Σ3型TBs为主。在高温低周疲劳下,出现了显著的退孪生现象,且退孪生程度随着应变幅的增加而增加。退孪生机制主要与位错-TBs交互作用和TBs上相析出有关。疲劳试样中塑性变形以平面滑移为主,形成了大量的位错滑移带结构。位错滑移带循环碰撞TBs,导致晶界共格关系消失并最终退孪生。位错-TBs交互作用诱导部分TBs析出M23C6相,析出相加剧TBs对位错的钉扎作用,强化位错-TBs的交互作用,加速退孪生过程。与C-HRA-5钢中随机晶界相比,残留TBs仍然具有较高的强度,抑制疲劳裂纹的萌生与扩展。

关键词 奥氏体耐热钢低周疲劳退孪生EBSD疲劳裂纹    
Abstract

C-HRA-5 steel is a new type of austenitic heat-resistant steel with excellent oxidation resistance and corrosion resistance, and high endurance strength at high temperatures. This steel can be used in superheaters and reheaters applied in 630-700oC advanced ultrasupercritical fossil-fired power plants, which is of great strategic significance to realize national energy savings and emission reduction targets. Detwinning often occurs in austenitic stainless steel when high-temperature fatigue and creep set in. However, the detwinning mechanism in C-HRA-5 steel during high-temperature fatigue and its influence on fatigue crack initiation and propagation remain unclear. Therefore, in this work, the detwinning behavior of C-HRA-5 steel under strain-controlled low-cycle fatigue (LCF) was studied at 700oC. The evolution of twin boundaries (TBs), detwinning mechanism, and influence of residual TBs on fatigue cracks were analyzed using SEM, EBSD, and TEM. After solution treatment at high temperatures, the fraction of low coincidence site lattice boundaries reached 69% in C-HRA-5 steel with dominant Σ3-type TBs. There was a remarkable detwinning effect under LCF loading. The degree of detwinning increased with increasing strain amplitude ranging from 0.3% to 0.7%. The detwinning mechanism was mainly related to the interactions at the dislocation TBs and precipitation of M23C6 at TBs. The plastic deformation of C-HRA-5 steel was dominated by planar slip under LCF loading, which resulted in dislocation gliding on particular planes. Therefore, numerous dislocation slip bands were formed. The collision of dislocation slip bands with TBs changed the coherent orientation of TBs and eventually led to detwinning. Meanwhile, the dislocation-TBs interaction induced the precipitation of M23C6 carbide at some TBs during LCF at 700oC, which strengthened the pinning of TBs on dislocations, thus accelerating the detwinning process. The residual TBs had higher strength than random grain boundaries and could inhibit the initiation and propagation of fatigue cracks.

Key wordsaustenitic heat-resistant steel    low-cycle fatigue    detwinning    EBSD    fatigue crack
收稿日期: 2021-09-07     
ZTFLH:  TG142.73  
基金资助:安徽省自然科学基金项目(2008085ME127);安徽省高等学校自然科学研究重点项目(KJ2020A0252);山西省重大科技攻关项目(20181101014)
作者简介: 周红伟,男,1978年生,博士
图1  经1250℃保温30 min水淬后C-5钢的OM像、TEM像、SAED花样及EDS结果
图2  固溶态C-5钢及其在700℃低周疲劳下组织的EBSD分析
图3  在700℃低周疲劳下C-5钢中TBs比例随总应变幅(εt)的变化
图4  C-5钢在700℃低周疲劳下TBs碎片化的EBSD分析
图5  700℃低周疲劳下C-5钢和固溶态组织中TBs的EBSD及极图分析
图6  C-5钢在700℃低周疲劳下位错与TBs交互作用的TEM像
图7  C-5钢在700℃、εt = 0.5%下TBs处析出相的SEM像
图8  C-5钢在700℃和εt = 0.5%下TBs上析出相的TEM像、SAED花样和EDS面扫描图
图9  C-5钢在700℃低周疲劳下的退孪生机制示意图
图10  C-5钢中疲劳裂纹与残留TBs的EBSD分析
1 Liu Z D, Chen Z Z, He X K, et al. Systematical innovation of heat resistant materials used for 630-700oC advanced ultra-supercritical (A-USC) fossil fired boilers [J]. Acta Metall. Sin., 2020, 56: 539
1 刘正东, 陈正宗, 何西扣 等. 630~700℃超超临界燃煤电站耐热管及其制造技术进展 [J]. 金属学报, 2020, 56: 539
doi: 10.11900/0412.1961.2019.00419
2 Fang X D, Bao H S, Li Y, et al. Development of model heat resisting seamless tube C-HRA-5 for ultra-supercritical power plant boiler [J]. Iron Steel, 2020, 55(2): 119
2 方旭东, 包汉生, 李 阳 等. 超超临界锅炉用新型耐热无缝管C-HRA-5的开发 [J]. 钢铁, 2020, 55(2): 119
3 Zhu C Z, Yuan Y, Yin H F, et al. Research progress of austenitic heat resistant steel Sanicro 25 used in ultra supercritical unit [J]. Mater. Rev., 2017, 31(13): 78
3 朱传志, 袁 勇, 尹宏飞 等. 超超临界机组用Sanicro 25耐热钢研究进展 [J]. 材料导报, 2017, 31(13): 78
4 Wang L, Fang X D, Wang J, et al. The precipitation control of grain boundary M23C6 phases and the ductility improvement in aged 22Cr-25Ni-WCuNbN austenitic stainless steel by Co addition [J]. Mater. Lett., 2020, 264: 127348
doi: 10.1016/j.matlet.2020.127348
5 Hu C L, Xia S, Li H, et al. Effect of grain boundary network on the intergranular stress corrosion cracking of 304 stainless steel [J]. Acta Metall. Sin., 2011, 47: 939
5 胡长亮, 夏 爽, 李 慧 等. 晶界网络特征对304不锈钢晶间应力腐蚀开裂的影响 [J]. 金属学报, 2011, 47: 939
6 Trillo E A, Murr L E. TEM investigation of M23C6 carbide precipitation behaviour on varying grain boundary misorientations in 304 stainless steels [J]. J. Mater. Sci., 1998, 33: 1263
doi: 10.1023/A:1004390029071
7 Shi F, Gao R H, Guan X J, et al. Application of grain boundary engineering to improve intergranular corrosion resistance in a Fe-Cr-Mn-Mo-N high-nitrogen and nickel-free austenitic stainless steel [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 789
doi: 10.1007/s40195-020-01000-8
8 Guan X J, Shi F, Jia Z P, et al. Grain boundary engineering of AL6XN super-austenitic stainless steel: distinctive effects of planar-slip dislocations and deformation twins [J]. Mater. Charact., 2020, 170: 110689
doi: 10.1016/j.matchar.2020.110689
9 Yang H, Xia S, Zhang Z L, et al. Improving the intergranular corrosion resistance of the weld heat-affected zone by grain boundary engineering in 304 austenitic stainless steel [J]. Acta Metall. Sin., 2015, 51: 333
9 杨 辉, 夏 爽, 张子龙 等. 晶界工程对于改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响 [J]. 金属学报, 2015, 51: 333
10 Ren S, Sun Z Y, Xu Z Z, et al. Effects of twins and precipitates at twin boundaries on Hall-Petch relation in high nitrogen stainless steel [J]. J. Mater. Res., 2018, 33: 1764
doi: 10.1557/jmr.2018.138
11 Mahajan S, Pande C S, Imam M A, et al. Formation of annealing twins in f.c.c. crystals [J]. Acta Mater., 1997, 45: 2633
doi: 10.1016/S1359-6454(96)00336-9
12 Zhang Z F, Shao C W, Wang B, et al. Tensile and fatigue properties and deformation mechanisms of twinning-induced plasticity steels [J]. Acta Metall. Sin., 2020, 56: 476
12 张哲峰, 邵琛玮, 王 斌 等. 孪生诱发塑性钢拉伸与疲劳性能及变形机制 [J]. 金属学报, 2020, 56: 476
doi: 10.11900/0412.1961.2019.00389
13 Lall A, Sarkar S, Ding R G, et al. Performance of Alloy 709 under creep-fatigue at various dwell times [J]. Mater. Sci. Eng., 2019, A761: 138028
14 Hong H U, Rho B S, Nam S W. Correlation of the M23C6 precipitation morphology with grain boundary characteristics in austenitic stainless steel [J]. Mater. Sci. Eng., 2001, A318: 285
15 Sakaguchi N, Ohguchi Y, Shibayama T, et al. Surface cracking on Σ3, Σ9 CSL and random grain boundaries in helium implanted 316L austenitic stainless steel [J]. J. Nucl. Mater., 2013, 432: 23
doi: 10.1016/j.jnucmat.2012.08.019
16 Guan X J, Shi F, Ji H M, et al. A possibility to synchronously improve the high-temperature strength and ductility in face-centered cubic metals through grain boundary engineering [J]. Scr. Mater., 2020, 187: 216
doi: 10.1016/j.scriptamat.2020.06.026
17 Zhang X Y, Li D F, Guo S L, et al. Influence of annealing time on Σ3 boundary and Σ9 boundary evolutions in hastelloy C-276 Alloy [J]. Rare Met. Mater. Eng., 2016, 45: 2253
doi: 10.1016/S1875-5372(17)30012-7
18 Zheng H F, Shi M J, Mao Q, et al. Chromium concentration near grain boundaries with various characters in Inconel alloy 600 [J]. Chin. J. Mater. Res., 2020, 34: 511
18 郑合凤, 师梦杰, 毛 强 等. Inconel 600合金中不同类型晶界处铬的浓度 [J]. 材料研究学报, 2020, 34: 511
doi: 10.11901/1005.3093.2019.509
19 Li H Z, Jing H Y, Xu L Y, et al. Microstructure mechanism, cyclic deformation behavior of an Fe-Ni-Cr alloy considering non-masing behavior [J]. Int. J. Fatigue, 2019, 127: 537
doi: 10.1016/j.ijfatigue.2019.06.035
20 Sarkar A, Dash M K, Nagesha A, et al. EBSD based studies on various modes of cyclic deformation at 923 K in a type 316LN stainless steel [J]. Mater. Sci. Eng., 2018, A723: 229
21 Zhang P, Zhang Z J, Li L L, et al. Twin boundary: Stronger or weaker interface to resist fatigue cracking? [J]. Scr. Mater., 2012, 66: 854
doi: 10.1016/j.scriptamat.2012.01.028
22 Wang J, Li N, Anderoglu O, et al. Detwinning mechanisms for growth twins in face-centered cubic metals [J]. Acta Mater., 2010, 58: 2262
doi: 10.1016/j.actamat.2009.12.013
23 Bai J S, Lu Q H, Lu L. Detwinning behavior induced by local shear strain in nanotwinned Cu [J]. Acta Metall. Sin., 2016, 52: 491
23 白敬胜, 卢秋虹, 卢 磊. 纳米孪晶Cu中局部剪切应变诱导的退孪生行为 [J]. 金属学报, 2016, 52: 491
doi: 10.11900/0412.1961.2015.00503
24 Li Q, Song J, Liu G S, et al. Migration kinetics of twinning disconnections in nanotwinned Cu: An in situ HRTEM deformation study [J]. Scripta Mater., 2021, 194: 113621
doi: 10.1016/j.scriptamat.2020.11.006
25 Ni S, Liao X Z, Zhu Y T. Effect of severe plastic deformation on the structure and mechanical properties of bulk nanocrystalline metals [J]. Acta Metall. Sin., 2014, 50: 156
25 倪 颂, 廖晓舟, 朱运田. 剧烈塑性变形对块体纳米金属材料结构和力学性能的影响 [J]. 金属学报, 2014, 50: 156
26 He W J, Hu R. Portevin-Le Chatelier effect, twinning-detwinning and disordering in an aged Ni-Cr-Mo alloy during large plastic deformation [J]. Mater. Sci. Eng., 2021, A803: 140506
27 Zhou H W, Zhang H Y, Bai F M, et al. Planar dislocation structure during creep-fatigue interactions of TP347H heat-resistant austenitic steel at 600oC [J]. Mater. Sci. Eng., 2020, A779: 139141
28 Jang M H, Kang J Y, Jang J H, et al. Microstructure control to improve creep strength of alumina-forming austenitic heat-resistant steel by pre-strain [J]. Mater. Charact., 2018, 137: 1
doi: 10.1016/j.matchar.2018.01.005
29 Heczko M, Polák J, Kruml T. Microstructure and dislocation arrangements in Sanicro 25 steel fatigued at ambient and elevated temperatures [J]. Mater. Sci. Eng., 2017, A680: 168
30 Guo Q Y, Li Y M, Chen B, et al. Effect of high-temperature ageing on microstructure and creep properties of S31042 heat-resistant steel [J]. Acta Metall. Sin., 2021, 57: 82
30 郭倩颖, 李彦默, 陈 斌 等. 高温时效处理对S31042耐热钢组织和蠕变性能的影响 [J]. 金属学报, 2021, 57: 82
doi: 10.11900/0412.1961.2020.00109
31 Zhou R Y, Zhu L H, Liu Y Y, et al. Precipitates and precipitation strengthening of sanicro 25 welded joint base metal crept at 973 K [J]. Steel Res. Int., 2017, 88: 1600414
doi: 10.1002/srin.201600414
32 Peng Z F, Ren W, Yang C, et al. Relationship between the evolution of phase parameters of grain boundary M23C6 and embrittlement of HR3C super-heater tubes in service [J]. Acta Metall. Sin., 2015, 51: 1325
32 彭志方, 任 文, 杨 超 等. HR3C钢运行过热器管的脆化与晶界M23C6相参量演化的关系 [J]. 金属学报, 2015, 51: 1325
33 Zhang Z, Hu Z F, Tu H Y, et al. Microstructure evolution in HR3C austenitic steel during long-term creep at 650oC [J]. Mater. Sci. Eng., 2017, A681: 74
34 Zhao W, Zhou H W, Fang L W, et al. Study on diversified carbide precipitation in high-strength low-alloy steel during tempering [J]. Steel Res. Int., 2021, 92: 2000723
doi: 10.1002/srin.202000723
35 Kaneko K, Fukunaga T, Yamada K, et al. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel [J]. Scr. Mater., 2011, 65: 509
doi: 10.1016/j.scriptamat.2011.06.010
36 Wen H Y, Zhao B B, Dong X P, et al. How big is the difference between precipitation at twin boundary and normal grain boundary in an alumina-forming austenitic steel during creep at 700oC? [J]. Mater. Lett., 2020, 274: 128019
doi: 10.1016/j.matlet.2020.128019
37 Calmunger M, Chai G C, Eriksson R, et al. Characterization of austenitic stainless steels deformed at elevated temperature [J]. Metall. Mater. Trans., 2017, 48A: 4525
38 Zhou H W, Bai F M, Yang L, et al. Mechanism of dynamic strain aging in a niobium-stabilized austenitic stainless steel [J]. Metall. Mater. Trans., 2018, 49A: 1202
39 Zhou H W, He Y Z, Cui M, et al. Dependence of dynamic strain ageing on strain amplitudes during the low-cycle fatigue of TP347H austenitic stainless steel at 550oC [J]. Int. J. Fatigue, 2013, 56: 1
doi: 10.1016/j.ijfatigue.2013.07.010
40 Song T, Wang Z W. Microstructure and properties of TP347HFG steel after high temperature service [J]. Heat Treat. Met., 2020, 45(4): 60
40 宋 涛, 王志武. 高温服役后TP347HFG钢的组织与性能 [J]. 金属热处理, 2020, 45(4): 60
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[3] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[4] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[5] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[6] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[7] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
[8] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[9] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[10] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[11] 吴翔,左秀荣,赵威威,王中洋. NM500耐磨钢拉伸过程中TiN的破碎机制[J]. 金属学报, 2020, 56(2): 129-136.
[12] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[13] 张啸尘, 孟维迎, 邹德芳, 周鹏, 石怀涛. 预循环应力对高速列车关键结构用铝合金材料疲劳裂纹扩展行为的影响[J]. 金属学报, 2019, 55(10): 1243-1250.
[14] 鲍思前, 刘兵兵, 赵刚, 徐洋, 柯珊珊, 胡晓, 刘磊. Hi-B钢二次再结晶退火中异常长大Goss取向晶粒的三维形貌表征[J]. 金属学报, 2018, 54(6): 877-885.
[15] 刘晏宇, 毛萍莉, 刘正, 王峰, 王志. Schmid因子的理论计算及其在镁合金高速变形过程中的应用[J]. 金属学报, 2018, 54(6): 950-958.