Please wait a minute...
金属学报  2022, Vol. 58 Issue (2): 165-174    DOI: 10.11900/0412.1961.2021.00089
  研究论文 本期目录 | 过刊浏览 |
回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响
沈国慧, 胡斌(), 杨占兵, 罗海文()
北京科技大学 冶金与生态工程学院 北京 100083
Influence of Tempering Temperature on Mechanical Properties and Microstructures of High-Al-Contained Medium Mn Steel Having δ-Ferrite
SHEN Guohui, HU Bin(), YANG Zhanbing, LUO Haiwen()
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
Guohui SHEN, Bin HU, Zhanbing YANG, Haiwen LUO. Influence of Tempering Temperature on Mechanical Properties and Microstructures of High-Al-Contained Medium Mn Steel Having δ-Ferrite[J]. Acta Metall Sin, 2022, 58(2): 165-174.

全文: PDF(3586 KB)   HTML
摘要: 

研究了回火温度对含15% δ铁素体(体积分数)的热轧高铝中锰钢显微组织和力学性能的影响。结果表明,钢中长300 μm的δ铁素体经热轧再结晶可被细化分割至大量长3 μm左右竹节状晶粒,且在回火温度高达700℃时尺寸不变。400~500℃回火后,马氏体基体依然维持较高的位错密度且析出细小渗碳体和纳米级VC粒子,屈服强度最高;同时C由马氏体向奥氏体的大量配分提高了奥氏体稳定性,获得了相对持久的加工硬化,最终获得了屈服强度约1500 MPa、抗拉强度1800 MPa和断后延伸率14%的最佳力学性能组合。该钢δ铁素体相一方面由于析出强化、晶粒细化和位错强化而得到显著硬化;另一方面δ铁素体体积分数不高且呈孤岛状嵌在马氏体基体中,这些特征导致该钢屈服强度由马氏体基体而非δ铁素体所决定,因此相比于其他类似Al含量的含δ铁素体中锰钢,屈服强度大幅度提高。

关键词 中锰钢回火奥氏体稳定性屈服强度加工硬化    
Abstract

Automobile industries require advanced high-strength steels (AHSSs) that possess high strength and good formability and are light; automobiles manufactured using AHSSs have reduced fuel consumption and enhanced safety compared to automobiles manufactured using traditional materials. Al-containing medium Mn steels, which are a typical example of 3rd generation AHSSs, have attracted much research attention with an aim of meeting these requirements as they possess extraordinary work hardening ability, which leads to high strength and excellent elongation at a low density. However, such steels often exhibit low yield strength resulting from the formation of coarse δ-ferrite grains due to the high Al content. In this study, the influence of tempering temperatures on the microstructure and mechanical properties of hot-rolled medium Mn steel containing 15% (volume fraction) δ-ferrite due to the addition of 3%Al (mass fraction) is studied. δ-ferrite with a length of 300 μm was refined and divided into a large number of bamboo-like grains having a length of about 3 μm due to dynamic recrystallization caused by hot rolling. The grain size of these refined δ-ferrite grains remained unchanged when the tempering temperature was increased to 700oC. In the case of tempering at 400-500oC, although the dislocation density in martensite decreased, the precipitation of fine cementite and nanosized VC particles compensated for this effect, leading to high yield strengths, which was almost the highest among all the tempering temperatures. Meanwhile, many C atoms could be partitioned from martensite to austenite, leading to the steel acquiring the enhanced chemical stability of austenite, which contributed to the higher work hardening rate and more durable strain hardening. Finally, the best mechanical combination consisting of a yield strength of about 1500 MPa, an ultimate tensile strength of 1800 MPa, and a total elongation of 14% was achieved after tempering at 400-500oC. The resultant yield strength is much higher than that of other medium Mn steels having similar Al content because it is dependent on the tempered martensitic matrix rather than δ-ferrite. This is due to two factors: first, δ-ferrite in the studied steel is strengthened due to precipitation, dislocation, and grain refinement hardening; second, δ-ferrite grains have a small fraction of 15% and a refined size of 3 μm; thus, they are actually embedded in the martensite matrix as isolated islands. These results open a path for the designing and manufacturing of new low-density steels having high yield strengths.

Key wordsmedium Mn steel    tempering    austenite stability    yield strength    work hardening
收稿日期: 2021-02-26     
ZTFLH:  TG142  
基金资助:国家自然科学基金项目(51861135302);中央高校基本科研业务费专项基金项目(FRF-IP-19-);003、FRF-IDRY-19-013、FRF-TP-18-002C2、06500151
作者简介: 沈国慧,男,1990年生,博士生
图1  不同温度回火后拉伸试样的工程应力-应变曲线及其与文献所报道类似Al含量中锰钢力学性能[15~22]的对比
Sample

YS

MPa

UTS

MPa

UEL

%

TEL

%

WHI

MPa

T300137018005.316.7430
T400156018154.014.1255
T500148518209.214.9335
T600135015807.610.3230
T7001045113011.626.685
表1  不同回火样品的力学性能
图2  不同温度回火试样变形前后残余奥氏体体积分数和奥氏体转化量、变形前奥氏体中C含量以及bcc相位错密度的变化和增量
图3  热轧和不同温度回火后试样显微组织的EBSD和SEM像
图4  T600样品拉断后宏观形貌及其中裂纹扩展的SEM像和TEM像及EDS(a) fractured specimen(b) fracture SEM images after tensile test (PAGB—prior austenite grain boundary) (c, d) cracks propagation along the rolling direction (e-g) magnification views of areas marked by A, B, and C in Figs.4c and d, respectively (h) EDS on the cementite from the particle marked by white arrow in Fig.4e (i) TEM image exhibiting the distribution of cementite and VC inner martensite lath (j) EDS on the VC from the particle marked by white arrow in Fig.6i

Specimen

Composition

(mass fraction / %)

Volume fraction of δ phase / %

Grain size of

δ / μm

Finishing rolling temperature

oC

Rolling reduction ratio / %
T3000.4C-7Mn-3Al-1.3Si-0.4(V + Nb)15.02.63 ± 0.4890092.0
Steel in Refs.[15,23]0.2C-9.7Mn-3.2Al-3.4Si52.425.175091.6
表2  本研究钢和文献[15,23]中研究钢的化学成分、δ相体积分数、平均晶粒尺寸、热轧温度和轧制压下率对比
图5  T300样品中VC在δ铁素体中分布的SEM像和TEM像及EDS
图6  不同温度回火样品的加工硬化曲线
1 Gibbs P J , De Moor E , Merwin M J , et al . Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel [J]. Metall. Mater. Trans., 2011, 42A: 3691
2 Zhong N , Wang X D , Wang L , et al . Enhancement of the mechanical properties of a Nb-microalloyed advanced high-strength steel treated by quenching-partitioning-tempering process [J]. Mater. Sci. Eng., 2009, A506: 111
3 Seo C H , Kwon K H , Choi K , et al . Deformation behavior of ferrite-austenite duplex lightweight Fe-Mn-Al-C steel [J]. Scr. Mater., 2012, 66: 519
4 Li Z C , Ding H , Cai Z H . Mechanical properties and austenite stability in hot-rolled 0.2C-1.6/3.2Al-6Mn-Fe TRIP steel [J]. Mater. Sci. Eng., 2015, A639: 559
5 Lee C Y , Jeong J , Han J , et al . Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite [J]. Acta Mater., 2015, 84: 1
6 Zhu Y S , Hu B , Luo H W . Influence of Nb and V on microstructure and mechanical properties of hot-rolled medium Mn steels [J]. Steel Res. Int., 2018, 89: 1700389
7 Sugimoto K J , Tanino H , Kobayashi J . Impact toughness of medium-Mn transformation-induced plasticity-aided steels [J]. Steel Res. Int., 2015, 86: 1151
8 Lee H , Jo M C , Sohn S S , et al . Novel medium-Mn (austenite + martensite) duplex hot-rolled steel achieving 1.6 GPa strength with 20% ductility by Mn-segregation-induced TRIP mechanism [J]. Acta Mater., 2018, 147: 247
9 He B B , Hu B , Yen H W , et al . High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
10 Wang C Y , Shi J , Cao W Q , et al . Characterization of microstructure obtained by quenching and partitioning process in low alloy martensitic steel [J]. Mater. Sci. Eng., 2010, A527: 3442
11 Sun X Y , Zhang M , Wang Y , et al . Effect of deep cryogenic pretreatment on microstructure and mechanical properties of warm-deformed 7 Mn steel after intercritical annealing [J]. Mater. Sci. Eng., 2019, A764: 138202
12 Zhou Y X , Song X T , Liang J W , et al . Innovative processing of obtaining nanostructured bainite with high strength-high ductility combination in low-carbon-medium-Mn steel: Process-structure-property relationship [J]. Mater. Sci. Eng., 2018, A718: 267
13 Dunn C G , Kogh E F . Comparison of dislocation densities of primary and secondary recrystallization grains of Si-Fe [J]. Acta Metall., 1957, 5: 548
14 Gay P , Hirsch P B , Kelly A . The estimation of dislocation densities in metals from X-ray data [J]. Acta Metall., 1953, 1: 315
15 Sun B H , Palanisamy D , Ponge D , et al . Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite [J]. Acta Mater., 2019, 164: 683
16 Zhang M D , Hu J , Cao W Q , et al . Microstructure and mechanical properties of high strength and high toughness micro-laminated dual phase steels [J]. Mater. Sci. Eng., 2014, A618: 168
17 Yi H L , Lee K Y , Bhadeshia H K D H . Mechanical stabilisation of retained austenite in δ-TRIP steel [J]. Mater. Sci. Eng., 2011, A528: 5900
18 Suh D W , Park S J , Lee T H , et al . Influence of Al on the microstructural evolution and mechanical behavior of low-carbon, manganese transformation-induced-plasticity steel [J]. Metall. Mater. Trans. 2010, 41A: 397
19 Hu Z P . Study on heat treatment process and strengthening-plasticizing mechanism of Fe- 0.2C-7Mn-3Al medium manganese steel [D] Shenyang: Northeastern University, 2014
19 胡智评 . Fe- 0.2 C-7Mn-3Al中锰钢的热处理工艺及强塑化机理研究 [D]. 沈阳: 东北大学, 2014
20 Lee S , Shin S , Kwon M , et al . Tensile properties of medium Mn steel with a bimodal UFG α + γ and coarse δ-ferrite microstructure [J]. Metall. Mater. Trans., 2017, 48A: 1678
21 Li Z C , Ding H , Misra R D K , et al . Microstructural evolution and deformation behavior in the Fe-(6, 8.5) Mn-3Al-0.2C TRIP steels [J]. Mater. Sci. Eng., 2016, A672: 161
22 Xu Y B , Hu Z P , Zou Y , et al . Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite [J]. Mater. Sci. Eng., 2017, A688: 40
23 Sun B H , Fazeli F , Scott C , et al . The influence of silicon additions on the deformation behavior of austenite-ferrite duplex medium manganese steels [J]. Acta Mater., 2018, 148: 249
24 Cordero Z C , Knight B E , Schuh C A . Six decades of the Hall-Petch effect—A survey of grain-size strengthening studies on pure metals [J]. Int. Mater. Rev., 2016, 61: 495
25 Han B Q , Yue S . Processing of ultrafine ferrite steels [J]. J. Mater. Process. Technol., 2003, 136: 100
26 Gladman T . Precipitation hardening in metals [J]. Mater. Sci. Technol., 1999, 15: 30
27 Lee S , Estrin Y , De Cooman B C . Constitutive modeling of the mechanical properties of V-added medium manganese TRIP steel [J]. Metall. Mater. Trans., 2013, 44A: 3136
28 Liang Z Y , Li Y Z , Huang M X . The respective hardening contributions of dislocations and twins to the flow stress of a twinning-induced plasticity steel [J]. Scr. Mater., 2016, 112: 28
29 Zhang J B , Sun Y R , Ji Z J , et al . Improved mechanical properties of V-microalloyed dual phase steel by enhancing martensite deformability [J]. J. Mater. Sci. Technol., 2021, 75: 139
30 Scott C P , Fazeli F , Amirkhiz B S , et al . Structure-properties relationship of ultra-fine grained V-microalloyed dual phase steels [J]. Mater. Sci. Eng., 2017, A703: 293
31 Zhang Y J , Miyamoto G , Shinbo K , et al . Effects of transformation temperature on VC interphase precipitation and resultant hardness in low-carbon steels [J]. Acta Mater., 2015, 84: 375
32 Hashemi S G , Eghbali B . Analysis of the formation conditions and characteristics of interphase and random vanadium precipitation in a low-carbon steel during isothermal heat treatment [J]. Int. J. Miner. Metall. Mater., 2018, 25: 339
33 Karmakar A , Mukherjee S , Kundu S , et al . Effect of composition and isothermal holding temperature on the precipitation hardening in vanadium-microalloyed steels [J]. Mater. Charact., 2017, 132: 31
34 Rashid M S , Rao B V N . Tempering characteristics of a vanadium containing dual phase steel [J]. Metall. Trans., 1982, 13A: 1679
35 Hecht M D , Picard Y N , Webler B A . Effects of Cr concentration on cementite coarsening in ultrahigh carbon steel [J]. Metall. Mater. Trans., 2019, 50A: 4779
36 Hecht M D , Picard Y N , Webler B A . Coarsening of inter-and intra-granular proeutectoid cementite in an initially pearlitic 2C-4Cr ultrahigh carbon steel [J]. Metall. Mater. Trans., 2017, 48A: 2320
37 Peŝiĉka J , Dronhofer A , Eggeler G . Free dislocations and boundary dislocations in tempered martensite ferritic steels [J]. Mater. Sci. Eng., 2004, A387-389: 176
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[3] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[4] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[5] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[6] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[7] 王存宇,常颖,周峰峦,曹文全,董瀚,翁宇庆. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410.
[8] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[9] 王占花, 惠卫军, 谢志奇, 张永健, 赵晓丽. 回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响[J]. 金属学报, 2020, 56(11): 1441-1451.
[10] 冯汉臣,闵学刚,魏大圣,周立初,崔世云,方峰. 低温回火对超大形变冷拔珠光体钢丝显微组织和力学性能的影响[J]. 金属学报, 2019, 55(5): 585-592.
[11] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[12] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[13] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[14] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[15] 阳锋, 罗海文, 董瀚. 退火温度对冷轧7Mn钢拉伸行为的影响及模拟研究[J]. 金属学报, 2018, 54(6): 859-867.