|
|
奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响 |
程远遥1,2, 赵刚1,2, 许德明1,2( ), 毛新平3, 李光强1,2 |
1 武汉科技大学 钢铁冶金及资源利用省部共建教育部重点实验室 武汉 430081 2 武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081 3 北京科技大学 钢铁共性技术协同创新中心 北京 100083 |
|
Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment |
CHENG Yuanyao1,2, ZHAO Gang1,2, XU Deming1,2( ), MAO Xinping3, LI Guangqiang1,2 |
1 Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China 2 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China 3 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
Yuanyao CHENG,
Gang ZHAO,
Deming XU,
Xinping MAO,
Guangqiang LI.
Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. Acta Metall Sin, 2023, 59(3): 413-423.
1 |
Speer J G, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Mater., 2003, 51: 2611
doi: 10.1016/S1359-6454(03)00059-4
|
2 |
Speer J G, Matlock D K, Cooman B C D, et al. Comments on “On the definitions of paraequilibrium and orthoequilibrium” by M. Hillert and J. Ågren, Scripta Materialia, 50, 697-9 (2004) [J]. Scr. Mater., 2005, 52: 83
doi: 10.1016/j.scriptamat.2004.08.029
|
3 |
Wang L, Feng W J. Development and application of Q&P sheet steels [A]. Advanced Steels: The Recent Scenario in Steel Science and Technology [M]. Berlin, Heidelberg: Springer, 2011: 255
|
4 |
Yin R Y. Achievement on the thin slab casting process in China [J]. Iron steel, 2008, 43(3): 1
doi: 10.1179/1743281215Y.0000000036
|
4 |
殷瑞钰. 中国薄板坯连铸连轧的进展 [J]. 钢铁, 2008, 43(3): 1
|
5 |
Gan Y, Li G Y, Ma M T, et al. Development of advanced compact steel process and deep working technology for high-strength-ductility auto-parts [A]. The 10th CSM Steel Congress & The 6th Baosteel Biennial Academic Conference [C]. Beijing: Metallurgical Industry Press, 2015: 1802
|
5 |
干 勇, 李光瀛, 马鸣图 等. 先进短流程-深加工新技术与高强塑性汽车构件的开发 [A]. 第十届中国钢铁年会暨第六届宝钢学术年会论文集II [C]. 北京: 冶金工业出版社, 2015: 1802
|
6 |
Gouné M, Aoued S, Danoix F, et al. Alloying-element interactions with austenite/martensite interface during quenching and partitioning of a model Fe-C-Mn-Si alloy [J]. Scr. Mater., 2019, 162: 181
doi: 10.1016/j.scriptamat.2018.11.012
|
7 |
Huyghe P, Caruso M, Collet J L, et al. In situ quantitative assessment of the role of silicon during the quenching and partitioning of a 0.2C steel [J]. Metall. Mater. Trans., 2019, 50A: 3486
|
8 |
Kang T, Zhao Z Z, Liang J H, et al. Effect of the austenitizing temperature on the microstructure evolution and mechanical properties of Q&P steel [J]. Mater. Sci. Eng., 2020, A771: 138584
|
9 |
Zhao Z Z, Liang J H, Zhao A M, et al. Effects of the austenitizing temperature on the mechanical properties of cold-rolled medium-Mn steel system [J]. J. Alloys Compd., 2017, 691: 51
doi: 10.1016/j.jallcom.2016.08.093
|
10 |
Mandal G, Ghosh S K, Bera S, et al. Effect of partial and full austenitisation on microstructure and mechanical properties of quenching and partitioning steel [J]. Mater. Sci. Eng., 2016, A676: 56
|
11 |
Chen S, Hu J, Shan L Y, et al. Characteristics of bainitic transformation and its effects on the mechanical properties in quenching and partitioning steels [J]. Mater. Sci. Eng., 2021, A803: 140706
|
12 |
Ariza-Echeverri E A, Masoumi M, Nishikawa A S, et al. Development of a new generation of quench and partitioning steels: Influence of processing parameters on texture, nanoindentation, and mechanical properties [J]. Mater. Des., 2020, 186: 108329
doi: 10.1016/j.matdes.2019.108329
|
13 |
Li Y J, Kang J, Zhang W N, et al. A novel phase transition behavior during dynamic partitioning and analysis of retained austenite in quenched and partitioned steels [J]. Mater. Sci. Eng., 2018, A710: 181
|
14 |
Zinsaz-Borujerdi A, Zarei-Hanzaki A, Abedi H R, et al. Room temperature mechanical properties and microstructure of a low alloyed TRIP-assisted steel subjected to one-step and two-step quenching and partitioning process [J]. Mater. Sci. Eng., 2018, A725: 341
|
15 |
Zhang J, Ding H, Misra R D K, et al. Enhanced stability of retained austenite and consequent work hardening rate through pre-quenching prior to quenching and partitioning in a Q-P microalloyed steel [J]. Mater. Sci. Eng., 2014, A611: 252
|
16 |
Ding R, Tang D, Zhao A M, et al. Effect of ultragrain refinement on quenching and partitioning steels manufactured by a novel method [J]. Mater. Des., 2015, 87: 640
doi: 10.1016/j.matdes.2015.08.073
|
17 |
Ren Y Q, Xie Z J, Zhang H W, et al. Effect of precursor microstructure on morphology feature and mechanical property of C-Mn-Si steel [J]. Acta Metall. Sin., 2013, 49: 1558
doi: 10.3724/SP.J.1037.2013.00301
|
17 |
任勇强, 谢振家, 张宏伟 等. 前躯体组织对C-Mn-Si钢组织特征及力学行为的影响 [J]. 金属学报, 2013, 49: 1558
doi: 10.3724/SP.J.1037.2013.00301
|
18 |
Huang J, Poole W J, Militzer M. Austenite formation during intercritical annealing [J]. Metall. Mater. Trans., 2004, 35A: 3363
|
19 |
Su Y Y, Chiu L H, Chuang T L, et al. Retained austenite amount determination comparison in JIS SKD11 steel using quantitative metallography and X-ray diffraction methods [J]. Adv. Mater. Res., 2012, 482-484: 1165
|
20 |
van Dijk N H, Butt A, Zhao L M, et al. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling [J]. Acta Mater., 2005, 53: 5439
doi: 10.1016/j.actamat.2005.08.017
|
21 |
Kang Y L, Fu J, Liu D L, et al. Microstructure and Properties Control of Thin Slab Continuous Casting and Rolling Steel [M]. Beijing: Metallurgical Industry Press, 2006: 178
|
21 |
康永林, 傅 杰, 柳得橹 等. 薄板坯连铸连轧钢的组织性能控制 [M]. 北京: 冶金工业出版社, 2006: 178
|
22 |
Santofimia M J, Zhao L, Sietsma J. Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization [J]. Metall. Mater. Trans., 2009, 40A: 46
|
23 |
Zhang J, Ding H, Misra R D K. Enhanced strain hardening and microstructural characterization in a low carbon quenching and partitioning steel with partial austenization [J]. Mater. Sci. Eng., 2015, A636: 53
|
24 |
Wang C Y, Zhang Y J, Cao W Q, et al. Austenite/martensite structure and corresponding ultrahigh strength and high ductility of steels processed by Q&P techniques [J]. Sci. China Technol. Sci., 2012, 55: 1844
doi: 10.1007/s11431-012-4875-9
|
25 |
Arlazarov A, Gouné M, Bouaziz O, et al. Evolution of microstructure and mechanical properties of medium Mn steels during double annealing [J]. Mater. Sci. Eng., 2012, A542: 31
|
26 |
Shi J, Sun X J, Wang M Q, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite [J]. Scr. Mater., 2010, 63: 815
doi: 10.1016/j.scriptamat.2010.06.023
|
27 |
Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel [J]. Scr. Mater., 2013, 68: 321
doi: 10.1016/j.scriptamat.2012.11.003
|
28 |
Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content [J]. Acta Mater., 2015, 84: 229
doi: 10.1016/j.actamat.2014.10.052
|
29 |
Wang M M, Hell J C, Tasan C C. Martensite size effects on damage in quenching and partitioning steels [J]. Scr. Mater., 2017, 138: 1
doi: 10.1016/j.scriptamat.2017.05.021
|
30 |
Yan S, Liu X H, Liu W J, et al. Comparative study on microstructure and mechanical properties of a C-Mn-Si steel treated by quenching and partitioning (Q&P) processes after a full and intercritical austenitization [J]. Mater. Sci. Eng., 2017, A684: 261
|
31 |
Sun J, Yu H, Wang S Y, et al. Study of microstructural evolution, microstructure-mechanical properties correlation and collaborative deformation-transformation behavior of quenching and partitioning (Q&P) steel [J]. Mater. Sci. Eng., 2014, A596: 89
|
32 |
Ding R, Tang D, Zhao A M, et al. A new type of quenching and partitioning processing developed from martensitic pre-microstructure [J]. Mater. Manuf. Processes, 2014, 29: 704
doi: 10.1080/10426914.2014.912304
|
33 |
Sun S H, Zhao A M. Effect of microstructure morphology on mechanical properties of quenching and partitioning steel [J]. Mater. Sci. Technol, 2018, 34: 347
doi: 10.1080/02670836.2017.1390901
|
34 |
Li Y J, Liu D, Chen D, et al. Response of retained austenite to quenching temperature in a novel low density Fe-Mn-Al-C steel processed by hot rolling-air cooling followed by non-isothermal partitioning [J]. Mater. Sci. Eng., 2019, A753: 197
|
35 |
Yi H L, Chen P, Bhadeshia H K D H. Optimizing the morphology and stability of retained austenite in a δ-TRIP steel [J]. Metall. Mater. Trans., 2014, 45A: 3512
|
36 |
Zhou Q, Qian L H, Tan J, et al. Inconsistent effects of mechanical stability of retained austenite on ductility and toughness of transformation-induced plasticity steels [J]. Mater. Sci. Eng., 2013, A578: 370
|
37 |
Xie Z J, Ren Y Q, Zhou W H, et al. Stability of retained austenite in multi-phase microstructure during austempering and its effect on the ductility of a low carbon steel [J]. Mater. Sci. Eng., 2014, A603: 69
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|