Please wait a minute...
金属学报  2023, Vol. 59 Issue (3): 413-423    DOI: 10.11900/0412.1961.2021.00243
  研究论文 本期目录 | 过刊浏览 |
奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响
程远遥1,2, 赵刚1,2, 许德明1,2(), 毛新平3, 李光强1,2
1 武汉科技大学 钢铁冶金及资源利用省部共建教育部重点实验室 武汉 430081
2 武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081
3 北京科技大学 钢铁共性技术协同创新中心 北京 100083
Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment
CHENG Yuanyao1,2, ZHAO Gang1,2, XU Deming1,2(), MAO Xinping3, LI Guangqiang1,2
1 Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
2 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
3 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
Yuanyao CHENG, Gang ZHAO, Deming XU, Xinping MAO, Guangqiang LI. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. Acta Metall Sin, 2023, 59(3): 413-423.

全文: PDF(3608 KB)   HTML
摘要: 

通过分析不同奥氏体化温度下热轧板制备的淬火-配分(Q&P)钢的显微组织和力学性能,探讨了奥氏体化温度对其显微组织与力学性能的影响。结果表明,热轧板制备Q&P Si-Mn钢中的铁素体呈带状和块状2种形貌,铁素体形貌会影响相邻区域残余奥氏体形貌,其中带状铁素体相邻区域残余奥氏体以薄带状为主,块状铁素体相邻区域残余奥氏体以块状为主。随着奥氏体化温度的升高,铁素体和残余奥氏体体积分数下降,对应的Q&P Si-Mn钢屈服强度、抗拉强度逐渐升高,延伸率及强塑积均逐渐下降。在810℃奥氏体化后,热轧板制备的Q&P Si-Mn钢强塑积达到28.36 GPa·%,相较于工业生产采用冷轧板制备的980 MPa级Q&P Si-Mn钢,强塑积提高了约36%。热轧板制备Q&P Si-Mn钢具有更高的强塑积与其组织中不同形貌铁素体能调控相邻区域残余奥氏体形貌及稳定性相关。

关键词 Si-Mn钢热轧板铁素体奥氏体化温度淬火-配分(Q&P)处理强塑积    
Abstract

The production of quenching and partitioning (Q&P) steel using hot-rolled steel instead of cold-rolled steel can significantly reduce the manufacturing process time and cost. However, the initial microstructures of hot-rolled and cold-rolled steels are different, which affect the microstructures and mechanical properties of Q&P steel. Because most studies used Q&P steel prepared from cold-rolled steel, the microstructures and mechanical properties of Q&P steel prepared from hot-rolled steel are unclear. This study examines the microstructures and mechanical properties of Q&P Si-Mn steel prepared from hot-rolled steel as a function of the austenitizing temperature. The results showed that the ferrite in the Q&P Si-Mn steel produced from the hot-rolled steel had lath-type and blocky-type morphologies. The observed ferrite morphology could influence the morphology of the adjacent retained austenite. The lath-type and blocky-type ferrite surrounding the retained austenite was mainly observed as the thin lath and blocky types, respectively. The ferrite and retained austenite contents decreased with increasing austenitizing temperature. In addition, the corresponding yield and tensile strengths increased gradually with a concomitant decrease in elongation and the product of strength and elongation. When the austenitizing temperature was 810oC, the product of strength and elongation of the Q&P Si-Mn steels produced from hot-rolled steel reached 28.36 GPa·%, which was approximately 36% higher than that of Q&P980 produced industrially from cold-rolled steel. The higher product of strength and elongation of Q&P Si-Mn steel produced from hot-rolled steel may be related to the different morphologies of ferrite, which might control the morphology and stability of the adjacent retained austenite. These experimental results could provide a theoretical basis for preparing Q&P steel from hot-rolled steel instead of cold-rolled steel.

Key wordshot-rolled plate of Si-Mn steel    ferrite    austenitizing temperature    quenching and partitioning (Q&P) treatment    product of strength and elongation
收稿日期: 2021-06-10     
ZTFLH:  TG142.1  
基金资助:中国博士后科学基金项目(2020M682494);湖北省技术创新专项重大项目(2017AAA113)
作者简介: 程远遥,男,1996年生,硕士生
图1  淬火-配分(Q&P) Si-Mn钢热处理工艺流程图
图2  Si-Mn钢热轧板显微组织的OM像和SEM像
图3  奥氏体化温度为810、840、870、910和950℃下制备Q&P Si-Mn钢显微组织的SEM像
图4  不同奥氏体化温度下制备Q&P Si-Mn钢的XRD谱、残余奥氏体体积分数及其C含量
图5  奥氏体化温度为810、870和950℃下制备Q&P Si-Mn钢的EBSD像
图6  奥氏体化温度为810、870和950℃下制备Q&P Si-Mn钢的TEM像
图7  不同奥氏体化温度下制备Q&P Si-Mn钢的工程应力-应变曲线
图8  不同奥氏体化温度下制备Q&P Si-Mn钢的屈服强度、抗拉强度、延伸率及强塑积
图9  奥氏体化温度为810、870和950℃下制备Q&P Si-Mn钢的真应力-真应变曲线和应变硬化率曲线
TA / oCStage IStage IIStage III
810ε < 0.0150.015 < ε < 0.1660.166 < ε < 0.207
870ε < 0.0180.018 < ε < 0.1120.112 < ε < 0.135
950ε < 0.0200.020 < ε < 0.0880.088 < ε < 0.109
表1  奥氏体化温度为810、870和950℃下制备Q&P Si-Mn钢应变硬化率曲线各阶段对应真应变范围
1 Speer J G, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Mater., 2003, 51: 2611
doi: 10.1016/S1359-6454(03)00059-4
2 Speer J G, Matlock D K, Cooman B C D, et al. Comments on “On the definitions of paraequilibrium and orthoequilibrium” by M. Hillert and J. Ågren, Scripta Materialia, 50, 697-9 (2004) [J]. Scr. Mater., 2005, 52: 83
doi: 10.1016/j.scriptamat.2004.08.029
3 Wang L, Feng W J. Development and application of Q&P sheet steels [A]. Advanced Steels: The Recent Scenario in Steel Science and Technology [M]. Berlin, Heidelberg: Springer, 2011: 255
4 Yin R Y. Achievement on the thin slab casting process in China [J]. Iron steel, 2008, 43(3): 1
doi: 10.1179/1743281215Y.0000000036
4 殷瑞钰. 中国薄板坯连铸连轧的进展 [J]. 钢铁, 2008, 43(3): 1
5 Gan Y, Li G Y, Ma M T, et al. Development of advanced compact steel process and deep working technology for high-strength-ductility auto-parts [A]. The 10th CSM Steel Congress & The 6th Baosteel Biennial Academic Conference [C]. Beijing: Metallurgical Industry Press, 2015: 1802
5 干 勇, 李光瀛, 马鸣图 等. 先进短流程-深加工新技术与高强塑性汽车构件的开发 [A]. 第十届中国钢铁年会暨第六届宝钢学术年会论文集II [C]. 北京: 冶金工业出版社, 2015: 1802
6 Gouné M, Aoued S, Danoix F, et al. Alloying-element interactions with austenite/martensite interface during quenching and partitioning of a model Fe-C-Mn-Si alloy [J]. Scr. Mater., 2019, 162: 181
doi: 10.1016/j.scriptamat.2018.11.012
7 Huyghe P, Caruso M, Collet J L, et al. In situ quantitative assessment of the role of silicon during the quenching and partitioning of a 0.2C steel [J]. Metall. Mater. Trans., 2019, 50A: 3486
8 Kang T, Zhao Z Z, Liang J H, et al. Effect of the austenitizing temperature on the microstructure evolution and mechanical properties of Q&P steel [J]. Mater. Sci. Eng., 2020, A771: 138584
9 Zhao Z Z, Liang J H, Zhao A M, et al. Effects of the austenitizing temperature on the mechanical properties of cold-rolled medium-Mn steel system [J]. J. Alloys Compd., 2017, 691: 51
doi: 10.1016/j.jallcom.2016.08.093
10 Mandal G, Ghosh S K, Bera S, et al. Effect of partial and full austenitisation on microstructure and mechanical properties of quenching and partitioning steel [J]. Mater. Sci. Eng., 2016, A676: 56
11 Chen S, Hu J, Shan L Y, et al. Characteristics of bainitic transformation and its effects on the mechanical properties in quenching and partitioning steels [J]. Mater. Sci. Eng., 2021, A803: 140706
12 Ariza-Echeverri E A, Masoumi M, Nishikawa A S, et al. Development of a new generation of quench and partitioning steels: Influence of processing parameters on texture, nanoindentation, and mechanical properties [J]. Mater. Des., 2020, 186: 108329
doi: 10.1016/j.matdes.2019.108329
13 Li Y J, Kang J, Zhang W N, et al. A novel phase transition behavior during dynamic partitioning and analysis of retained austenite in quenched and partitioned steels [J]. Mater. Sci. Eng., 2018, A710: 181
14 Zinsaz-Borujerdi A, Zarei-Hanzaki A, Abedi H R, et al. Room temperature mechanical properties and microstructure of a low alloyed TRIP-assisted steel subjected to one-step and two-step quenching and partitioning process [J]. Mater. Sci. Eng., 2018, A725: 341
15 Zhang J, Ding H, Misra R D K, et al. Enhanced stability of retained austenite and consequent work hardening rate through pre-quenching prior to quenching and partitioning in a Q-P microalloyed steel [J]. Mater. Sci. Eng., 2014, A611: 252
16 Ding R, Tang D, Zhao A M, et al. Effect of ultragrain refinement on quenching and partitioning steels manufactured by a novel method [J]. Mater. Des., 2015, 87: 640
doi: 10.1016/j.matdes.2015.08.073
17 Ren Y Q, Xie Z J, Zhang H W, et al. Effect of precursor microstructure on morphology feature and mechanical property of C-Mn-Si steel [J]. Acta Metall. Sin., 2013, 49: 1558
doi: 10.3724/SP.J.1037.2013.00301
17 任勇强, 谢振家, 张宏伟 等. 前躯体组织对C-Mn-Si钢组织特征及力学行为的影响 [J]. 金属学报, 2013, 49: 1558
doi: 10.3724/SP.J.1037.2013.00301
18 Huang J, Poole W J, Militzer M. Austenite formation during intercritical annealing [J]. Metall. Mater. Trans., 2004, 35A: 3363
19 Su Y Y, Chiu L H, Chuang T L, et al. Retained austenite amount determination comparison in JIS SKD11 steel using quantitative metallography and X-ray diffraction methods [J]. Adv. Mater. Res., 2012, 482-484: 1165
20 van Dijk N H, Butt A, Zhao L M, et al. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling [J]. Acta Mater., 2005, 53: 5439
doi: 10.1016/j.actamat.2005.08.017
21 Kang Y L, Fu J, Liu D L, et al. Microstructure and Properties Control of Thin Slab Continuous Casting and Rolling Steel [M]. Beijing: Metallurgical Industry Press, 2006: 178
21 康永林, 傅 杰, 柳得橹 等. 薄板坯连铸连轧钢的组织性能控制 [M]. 北京: 冶金工业出版社, 2006: 178
22 Santofimia M J, Zhao L, Sietsma J. Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization [J]. Metall. Mater. Trans., 2009, 40A: 46
23 Zhang J, Ding H, Misra R D K. Enhanced strain hardening and microstructural characterization in a low carbon quenching and partitioning steel with partial austenization [J]. Mater. Sci. Eng., 2015, A636: 53
24 Wang C Y, Zhang Y J, Cao W Q, et al. Austenite/martensite structure and corresponding ultrahigh strength and high ductility of steels processed by Q&P techniques [J]. Sci. China Technol. Sci., 2012, 55: 1844
doi: 10.1007/s11431-012-4875-9
25 Arlazarov A, Gouné M, Bouaziz O, et al. Evolution of microstructure and mechanical properties of medium Mn steels during double annealing [J]. Mater. Sci. Eng., 2012, A542: 31
26 Shi J, Sun X J, Wang M Q, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite [J]. Scr. Mater., 2010, 63: 815
doi: 10.1016/j.scriptamat.2010.06.023
27 Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel [J]. Scr. Mater., 2013, 68: 321
doi: 10.1016/j.scriptamat.2012.11.003
28 Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content [J]. Acta Mater., 2015, 84: 229
doi: 10.1016/j.actamat.2014.10.052
29 Wang M M, Hell J C, Tasan C C. Martensite size effects on damage in quenching and partitioning steels [J]. Scr. Mater., 2017, 138: 1
doi: 10.1016/j.scriptamat.2017.05.021
30 Yan S, Liu X H, Liu W J, et al. Comparative study on microstructure and mechanical properties of a C-Mn-Si steel treated by quenching and partitioning (Q&P) processes after a full and intercritical austenitization [J]. Mater. Sci. Eng., 2017, A684: 261
31 Sun J, Yu H, Wang S Y, et al. Study of microstructural evolution, microstructure-mechanical properties correlation and collaborative deformation-transformation behavior of quenching and partitioning (Q&P) steel [J]. Mater. Sci. Eng., 2014, A596: 89
32 Ding R, Tang D, Zhao A M, et al. A new type of quenching and partitioning processing developed from martensitic pre-microstructure [J]. Mater. Manuf. Processes, 2014, 29: 704
doi: 10.1080/10426914.2014.912304
33 Sun S H, Zhao A M. Effect of microstructure morphology on mechanical properties of quenching and partitioning steel [J]. Mater. Sci. Technol, 2018, 34: 347
doi: 10.1080/02670836.2017.1390901
34 Li Y J, Liu D, Chen D, et al. Response of retained austenite to quenching temperature in a novel low density Fe-Mn-Al-C steel processed by hot rolling-air cooling followed by non-isothermal partitioning [J]. Mater. Sci. Eng., 2019, A753: 197
35 Yi H L, Chen P, Bhadeshia H K D H. Optimizing the morphology and stability of retained austenite in a δ-TRIP steel [J]. Metall. Mater. Trans., 2014, 45A: 3512
36 Zhou Q, Qian L H, Tan J, et al. Inconsistent effects of mechanical stability of retained austenite on ductility and toughness of transformation-induced plasticity steels [J]. Mater. Sci. Eng., 2013, A578: 370
37 Xie Z J, Ren Y Q, Zhou W H, et al. Stability of retained austenite in multi-phase microstructure during austempering and its effect on the ductility of a low carbon steel [J]. Mater. Sci. Eng., 2014, A603: 69
[1] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[2] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[3] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[4] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[5] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[6] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[7] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
[8] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[9] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[10] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[11] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.
[12] 刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.
[13] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[14] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[15] 陈浩, 张璁雨, 朱加宁, 杨泽南, 丁然, 张弛, 杨志刚. 奥氏体/铁素体界面迁移与元素配分的研究进展[J]. 金属学报, 2018, 54(2): 217-227.