Please wait a minute...
金属学报  2023, Vol. 59 Issue (10): 1376-1388    DOI: 10.11900/0412.1961.2021.00306
  研究论文 本期目录 | 过刊浏览 |
珠光体-奥氏体相变中扩散通道的相场法研究
李赛1, 杨泽南2, 张弛1, 杨志刚1()
1.清华大学 材料学院 北京 100084
2.中国航发北京航空材料研究院 先进高温结构材料重点实验室 北京 100095
Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation
LI Sai1, YANG Zenan2, ZHANG Chi1, YANG Zhigang1()
1.School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2.Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
引用本文:

李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
Sai LI, Zenan YANG, Chi ZHANG, Zhigang YANG. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. Acta Metall Sin, 2023, 59(10): 1376-1388.

全文: PDF(2572 KB)   HTML
摘要: 

通过实验方法和基于MICRESS的相场模型,对Fe-0.6%C-2%Mn (质量分数)合金在720和740℃等温时的珠光体-奥氏体相变进行研究。实验结果表明,由动力学曲线可粗略估测出奥氏体/珠光体界面迁移速率,并通过Mn在新生奥氏体中的分布,验证奥氏体相变模式在720和740℃等温时分别为间隙型合金元素C的扩散控制(PLE)模式和置换型合金元素的扩散控制(NPLE)模式。利用相场模拟研究γα和界面扩散通道的引入对PLE和NPLE模式下奥氏体/珠光体界面迁移速率的影响,其中NPLE模式下C元素的主要扩散通道可能为奥氏体和铁素体;在PLE模式下,Mn主要通过相界面进行扩散,但相较于奥氏体扩散通道,铁素体扩散通道对相界面迁移产生更大贡献,因此在热动力学分析中不可将其忽略,这与对PLE模式分析的传统认知有所差异。

关键词 珠光体奥氏体化相场模拟相变动力学元素扩散    
Abstract

In the development of advanced steel, accurate and detailed knowledge about the kinetics of phase transformations and microstructure formation is critical. The critical issue in pearlite-austenite transformation is the consideration of diffusional paths of the alloy element. Simulation has been an available method to study the diffusion of alloy elements and the migration rate of the phase boundary in the complex morphological evolution of austenite growth. The isothermal pearlite-austenite transformations at 720 and 740oC in Fe-0.6%C-2%Mn (mass fraction) alloy were studied by phase-field methods based on MICRESS. At different temperatures, the effects of diffusional paths on the austenite transformation were discussed. To achieve a semiquantitative verification of the simulated results, the migration rates of the austenite/pearlite boundary at 720 and 740oC were estimated from the experimental kinetics curves by fitting the JMA equation. By measuring the Mn profile in austenite, the modes of the austenization at 720 and 740oC can be verified as partitioned local equilibrium (PLE) and non-partitioned local equilibrium (NPLE) modes. The heterogeneous distribution of Mn in austenite at 740oC can be observed with STEM-EDS. However, the homogenous distribution of Mn can be found near the pearlite/austenite boundary in austenite at 720oC. The cases considering the γ, α, and interface-diffusional paths were simulated by phase-field methods to compare with the migration rates of the austenite/pearlite boundary. Because carbon is an interstitial element in steel and has an interstitial diffusional mechanism, it can be speculated reasonably that the diffusion of C mainly proceeded in austenite and ferrite through the considerations of the atom-size of carbon and the experimental results. Phase-field methods were used to study Mn diffusion in the lamellar pearlite-austenite transformation. With the analysis of the experimental estimations, the interface-diffusional path was observed as the dominant path for the Mn diffusion. It is because the Mn atoms have greater diffusivity in interfaces than in γ or α-diffusional paths. Furthermore, the diffusional activation energy is closely related to the diffusivity of Mn at the interface. Moreover, compared with the γ-diffusional path, the diffusional flux of Mn in ferrite is much larger than that in austenite. Thus, it can be concluded that the contribution of the α-diffusional path to the migration rate of the pearlite/austenite boundary is larger than that of the γ-diffusional path. As a result, considering the α-diffusional path in the thermodynamics analysis under NPLE mode makes more sense. However, ignoring the interface- and α-diffusional path, which is different from the traditional cognition in PLE mode, will result in a magnitude error for the thermodynamics analysis.

Key wordspearlite    austenization    phase field simulation    kinetics of phase transformation    element diffusion
收稿日期: 2021-07-27     
ZTFLH:  TG113.1  
基金资助:国家自然科学基金项目(51771100)
通讯作者: 杨志刚,zgyang@tsinghua.edu.cn,主要从事金属材料研究
Corresponding author: YANG Zhigang, professor, Tel: (010)62795031, E-mail: zgyang@tsinghua.edu.cn
作者简介: 李 赛,男,1994年生,博士生
No.TemperatureSpacing of the initialDiffusional
oCpearlite / nmpath
A740150γ + α + interface
B740150γ + α
C740150γ
D74075γ + α + interface
E74075γ + α
F74075γ
G720150γ + α + interface
H720150γ + α
I720150γ
表1  模拟编号及所对应的模拟条件
Physical quantityItemValueUnit
Interface energyγ/α, γ/θ, α/θ1.5 × 10-5J·cm-2
Interface mobilityγ/α, γ/θ1.5cm4·J-1·s-1
α/θ1cm4·J-1·s-1
Frequency factor D0C in γ0.1996cm2·s-1
C in α0.419cm2·s-1
C in interface0.1996cm2·s-1
Mn in γ0.1501cm2·s-1
Mn in α6.7119 × 103cm2·s-1
Mn in interface0.1501cm2·s-1
Activity energy QC in γ1.390 × 105J·mol-1
C in α1.086 × 105J·mol-1
C in interface0.97 × 105J·mol-1
Mn in γ2.602 × 105J·mol-1
Mn in α3.062 × 105J·mol-1
Mn in interface1.55 × 105J·mol-1
Thickness of the diffusional interface0.5nm
表2  本模拟涉及物理量及其取值[26,36]
图1  高温激光共聚焦显微镜观察下样品在720和740℃等温至完全奥氏体化的显微组织
图2  初始珠光体在720和740℃等温时的奥氏体相变动力学曲线
图3  初始珠光体在720℃等温60 s后的显微组织及Mn浓度分布
图4  初始珠光体在740℃等温20 s后的显微组织及Mn浓度分布
图5  等温温度为740℃,扩散通道为γ + α + interface时,珠光体-奥氏体相变组织形貌演化
图6  等温温度为720℃时,珠光体-奥氏体相变组织形貌演化
图7  初始珠光体在740℃等温0.004 s时的浓度分布
图8  初始珠光体在720℃等温3.81 s时的浓度分布
图9  不同模拟条件下奥氏体/珠光体界面迁移速率
图10  考虑γ + α扩散通道时,奥氏体/珠光体界面前沿合金元素浓度分布
图11  合金元素在奥氏体和铁素体中的扩散通量分布
图12  奥氏体/珠光体界面迁移速率随界面扩散激活能(Qint)的变化趋势
1 Xu Z Y, Jin X J, Zhang J H, et al. Phase Transformation in Materials [M]. Beijing: Higher Education Press, 2013: 110
1 徐祖耀, 金学军, 张骥华 等. 材料相变 [M]. 北京: 高等教育出版社, 2013: 110
2 Li J J, Andrew G, Liu W. Effects of austenitization and cooling rates on the microstructure in a hypereutectoid steel [J]. Acta Metall. Sin., 2013, 49: 583
doi: 10.3724/SP.J.1037.2012.00699
2 李俊杰, Andrew G, 刘 伟. 奥氏体化与冷却速率对过共析钢组织的影响 [J]. 金属学报, 2013, 49: 583
doi: 10.3724/SP.J.1037.2012.00699
3 Katsamas A I. A computational study of austenite formation kinetics in rapidly heated steels [J]. Surf. Coat. Technol., 2007, 201: 6414
doi: 10.1016/j.surfcoat.2006.12.014
4 Nehrenberg A E. The growth of austenite as related to prior structure [J]. JOM, 1950, 2(1): 162
doi: 10.1007/BF03398992
5 Caballero F G, Capdevila C, De Andrés C G. Influence of pearlite morphology and heating rate on the kinetics of continuously heated austenite formation in a eutectoid steel [J]. Metall. Mater. Trans., 2001, 32A: 1283
6 Enomoto M, Li S, Yang Z N, et al. Partition and non-partition transition of austenite growth from a ferrite and cementite mixture in hypo- and hypereutectoid Fe-C-Mn alloys [J]. Calphad, 2018, 61: 116
doi: 10.1016/j.calphad.2018.03.002
7 Xia Y, Enomoto M, Yang Z G, et al. Effects of alloying elements on the kinetics of austenitization from pearlite in Fe-C-M alloys [J]. Philos. Mag., 2013, 93: 1095
doi: 10.1080/14786435.2012.744484
8 Azizi-Alizamini H, Militzer M, Poole W J. Austenite formation in plain low-carbon steels [J]. Metall. Mater. Trans., 2011, 42A: 1544
9 Zeldovich V I, Frolova N Y, Kheifets A E, et al. Features of austenite formation in low-carbon steel during high speed heating induced by high-speed deformation [J]. Met. Sci. Heat Treat., 2020, 62: 315
doi: 10.1007/s11041-020-00560-x
10 Hillert M, Nilsson K, Torndahl L E. Effect of alloying elements on the formation of austenite and dissolution of cementite [J]. J. Iron Steel Inst., 1971, 209: 49
11 Mancini R, Budde C. Reaustenitisation in Fe-C steels revisited [J]. Acta Mater., 1999, 47: 2907
doi: 10.1016/S1359-6454(99)00171-8
12 Chae J Y, Jang J H, Zhang G H, et al. Dilatometric analysis of cementite dissolution in hypereutectoid steels containing Cr [J]. Scr. Mater., 2011, 65: 245
doi: 10.1016/j.scriptamat.2011.04.018
13 Nishibata T, Hayashi K, Saito T, et al. Influence of morphology of cementite on kinetics of austenitization in the binary Fe-C system [J]. Mater. Trans., 2020, 61: 1740
doi: 10.2320/matertrans.MT-M2019342
14 Fridberg J, Torndahl L E, Hillert M. Diffusion in iron [J]. Jernkontorets Ann., 1969, 153: 263
15 Akbay T, Atkinson C. The influence of diffusion of carbon in ferrite as well as in austenite on a model of reaustenitization from ferrite/cementite mixtures in Fe-C steels [J]. J. Mater. Sci., 1996, 31: 2221
doi: 10.1007/BF01152931
16 Kapturkiewicz W, Fraś E, Burbelko A A. Computer simulation of the austenitizing process in cast iron with pearlitic matrix [J]. Mater. Sci. Eng., 2005, A413-414: 352
17 Miyamoto G, Usuki H, Li Z D, et al. Effects of Mn, Si and Cr addition on reverse transformation at 1073K from spheroidized cementite structure in Fe-0.6mass% C alloy [J]. Acta Mater., 2010, 58: 4492
doi: 10.1016/j.actamat.2010.04.045
18 Wu Y X, Wang L Y, Sun W W, et al. Austenite formation kinetics from multicomponent cementite-ferrite aggregates [J]. Acta Mater., 2020, 196: 470
doi: 10.1016/j.actamat.2020.07.001
19 Li Y Q, He Y, Liu J H, et al. Phase transformation and microstructure evolution of pearlite heat-resistant steel during heating [J]. Mater. Sci. Technol., 2020, 36: 771
doi: 10.1080/02670836.2020.1738071
20 Khan A R, Yu S F, Zubair M. Direct observation of austenite and pearlite formation in thermally simulated coarse grain heat-affected zone of pearlite railway steel [J]. J. Mater. Eng. Perform., 2021, 30: 497
doi: 10.1007/s11665-020-05327-2
21 Li Z D, Miyamoto G, Yang Z G, et al. Kinetics of reverse transformation from pearlite to austenite in an Fe-0.6 mass pct C alloy and the effects of alloying elements [J]. Metall. Mater. Trans., 2011, 42A: 1586
22 Yang Z N, Xia Y, Enomoto M, et al. Effect of alloying element partition in pearlite on the growth of austenite in high-carbon low alloy steel [J]. Metall. Mater. Trans., 2016, 47A: 1019
23 Yang Z N, Enomoto M, Zhang C, et al. Transition between alloy-element partitioned and non-partitioned growth of austenite from a ferrite and cementite mixture in a high-carbon low-alloy steel [J]. Philos. Mag. Lett., 2016, 96: 256
doi: 10.1080/09500839.2016.1197432
24 Chen L Q. Phase-field models for microstructure evolution [J]. Ann. Rev. Mater. Res., 2002, 32: 113
doi: 10.1146/matsci.2002.32.issue-1
25 Militzer M. Phase field modeling of microstructure evolution in steels [J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 106
doi: 10.1016/j.cossms.2010.10.001
26 Nakajima K, Apel M, Steinbach I. The role of carbon diffusion in ferrite on the kinetics of cooperative growth of pearlite: A multi-phase field study [J]. Acta Mater., 2006, 54: 3665
doi: 10.1016/j.actamat.2006.03.050
27 Steinbach I, Apel M. The influence of lattice strain on pearlite formation in Fe-C [J]. Acta Mater., 2007, 55: 4817
doi: 10.1016/j.actamat.2007.05.013
28 Loginova I, Odqvist J, Amberg G, et al. The phase-field approach and solute drag modeling of the transition to massive γα transformation in binary Fe-C alloys [J]. Acta Mater., 2003, 51: 1327
doi: 10.1016/S1359-6454(02)00527-X
29 Huang C J, Browne D J, McFadden S. A phase-field simulation of austenite to ferrite transformation kinetics in low carbon steels [J]. Acta Mater., 2006, 54: 11
doi: 10.1016/j.actamat.2005.08.033
30 Militzer M, Azizi-Alizamini H. Phase field modelling of austenite formation in low carbon steels [J]. Solid State Phenom., 2011, 172-174: 1050
doi: 10.4028/www.scientific.net/SSP.172-174
31
32 Rudnizki J, Böttger B, Prahl U, et al. Phase-field modeling of austenite formation from a ferrite plus pearlite microstructure during annealing of cold-rolled dual-phase steel [J]. Metall. Mater. Trans., 2011, 42A: 2516
33 Zhang X, Shen G, Li C W, et al. Phase-field simulation of austenite reversion in a Fe-9.6Ni-7.1Mn (at.%) martensitic steel governed by a coupled diffusional/displacive mechanism [J]. Mater. Des., 2020, 188: 108426
doi: 10.1016/j.matdes.2019.108426
34 Tiaden J, Nestler B, Diepers H J, et al. The multiphase-field model with an integrated concept for modelling solute diffusion [J]. Physica, 1998, 115D: 73
35 Li S, Yang Z N, Enomoto M, et al. Study of partition to non-partition transition of austenite growth along pearlite lamellae in near-eutectoid Fe-C-Mn alloy [J]. Acta Mater., 2019, 177: 198
doi: 10.1016/j.actamat.2019.07.038
36 Yang Z N. Effects of alloying element partition and its interfacial segregation on the thermodynamics and kinetics of phase transformation in steels [D]. Beijing: Tsinghua University, 2017
36 杨泽南. 合金元素配分与偏聚对钢中相变热力学及动力学的影响 [D]. 北京: 清华大学, 2017
37 Karmazin L. Experimental study of the austenitization process of hypereutectoid steel alloyed with small amounts of silicon, manganese and chromium, and with an initial structure of globular cementite in a ferrite matrix [J]. Mater. Sci. Eng., 1991, A142: 71
38 Gaude-Fugarolas D, Bhadeshia H K D H. A model for austenitisation of hypoeutectoid steels [J]. J. Mater. Sci., 2003, 38: 1195
doi: 10.1023/A:1022805719924
39 Roósz A, Gácsi Z, Fuchs E G. Isothermal formation of austenite in eutectoid plain carbon steel [J]. Acta Metall., 1983, 31: 509
doi: 10.1016/0001-6160(83)90039-1
40 Chen R C, Zheng Z Z, Li N, et al. In-situ investigation of phase transformation behaviors of 300M steel in continuous cooling process [J]. Mater. Charact., 2018, 144: 400
doi: 10.1016/j.matchar.2018.07.034
41 Haroun N A. Grain size statistics [J]. J. Mater. Sci., 1981, 16: 2257
doi: 10.1007/BF00542388
42 Yu Y N. Fundamentals of Material [M]. 2nd Ed., Beijing: Higher Education Press, 2012: 650
42 余永宁. 材料科学基础 [M]. 第2版. 北京: 高等教育出版社, 2012: 650
43 Sun W W, Wu Y X, Yang S C, et al. Advanced high strength steel (AHSS) development through chemical patterning of austenite [J]. Scr. Mater., 2018, 146: 60
doi: 10.1016/j.scriptamat.2017.11.007
44 Speich G R, Demarest V A, Miller R L. Formation of austenite during intercritical annealing of dual-phase steels [J]. Metall. Mater. Trans., 1981, 12A: 1419
45 Yu Y N. Principles of the Metallography [M]. 3rd Ed., Beijing: Metallurgical Industry Press, 2020: 530
45 余永宁. 金属学原理 [M]. 第3版. 北京: 冶金工业出版社, 2020: 530
[1] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[3] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[4] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[5] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[6] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[7] 王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.
[8] 孙正阳, 王昱天, 柳文波. 气孔与晶界相互作用的相场模拟[J]. 金属学报, 2020, 56(12): 1643-1653.
[9] 冯汉臣,闵学刚,魏大圣,周立初,崔世云,方峰. 低温回火对超大形变冷拔珠光体钢丝显微组织和力学性能的影响[J]. 金属学报, 2019, 55(5): 585-592.
[10] 徐文胜, 张文征. 先共析渗碳体上形核的珠光体晶体学研究[J]. 金属学报, 2019, 55(4): 496-510.
[11] 徐士新, 余伟, 李舒笳, 王坤, 孙齐松. 预变形温度对纳米贝氏体相变动力学及组织的影响[J]. 金属学报, 2018, 54(8): 1113-1121.
[12] 季培蓓, 周立初, 周雪峰, 方峰, 蒋建清. 冷拉拔珠光体钢丝的力学性能各向异性研究[J]. 金属学报, 2018, 54(4): 494-500.
[13] 张金虎,徐东生,王云志,杨锐. 位错对Ti-6Al-4V合金α相形核及微织构形成的影响*[J]. 金属学报, 2016, 52(8): 905-915.
[14] 宋鹏程,柳文波,陈磊,张弛,杨志刚. 形状记忆合金Au30Cu25Zn45中热弹性马氏体相变的相场模拟*[J]. 金属学报, 2016, 52(8): 1000-1008.
[15] 何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.