|
|
珠光体-奥氏体相变中扩散通道的相场法研究 |
李赛1, 杨泽南2, 张弛1, 杨志刚1( ) |
1.清华大学 材料学院 北京 100084 2.中国航发北京航空材料研究院 先进高温结构材料重点实验室 北京 100095 |
|
Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation |
LI Sai1, YANG Zenan2, ZHANG Chi1, YANG Zhigang1( ) |
1.School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China 2.Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China |
引用本文:
李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
Sai LI,
Zenan YANG,
Chi ZHANG,
Zhigang YANG.
Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. Acta Metall Sin, 2023, 59(10): 1376-1388.
1 |
Xu Z Y, Jin X J, Zhang J H, et al. Phase Transformation in Materials [M]. Beijing: Higher Education Press, 2013: 110
|
1 |
徐祖耀, 金学军, 张骥华 等. 材料相变 [M]. 北京: 高等教育出版社, 2013: 110
|
2 |
Li J J, Andrew G, Liu W. Effects of austenitization and cooling rates on the microstructure in a hypereutectoid steel [J]. Acta Metall. Sin., 2013, 49: 583
doi: 10.3724/SP.J.1037.2012.00699
|
2 |
李俊杰, Andrew G, 刘 伟. 奥氏体化与冷却速率对过共析钢组织的影响 [J]. 金属学报, 2013, 49: 583
doi: 10.3724/SP.J.1037.2012.00699
|
3 |
Katsamas A I. A computational study of austenite formation kinetics in rapidly heated steels [J]. Surf. Coat. Technol., 2007, 201: 6414
doi: 10.1016/j.surfcoat.2006.12.014
|
4 |
Nehrenberg A E. The growth of austenite as related to prior structure [J]. JOM, 1950, 2(1): 162
doi: 10.1007/BF03398992
|
5 |
Caballero F G, Capdevila C, De Andrés C G. Influence of pearlite morphology and heating rate on the kinetics of continuously heated austenite formation in a eutectoid steel [J]. Metall. Mater. Trans., 2001, 32A: 1283
|
6 |
Enomoto M, Li S, Yang Z N, et al. Partition and non-partition transition of austenite growth from a ferrite and cementite mixture in hypo- and hypereutectoid Fe-C-Mn alloys [J]. Calphad, 2018, 61: 116
doi: 10.1016/j.calphad.2018.03.002
|
7 |
Xia Y, Enomoto M, Yang Z G, et al. Effects of alloying elements on the kinetics of austenitization from pearlite in Fe-C-M alloys [J]. Philos. Mag., 2013, 93: 1095
doi: 10.1080/14786435.2012.744484
|
8 |
Azizi-Alizamini H, Militzer M, Poole W J. Austenite formation in plain low-carbon steels [J]. Metall. Mater. Trans., 2011, 42A: 1544
|
9 |
Zeldovich V I, Frolova N Y, Kheifets A E, et al. Features of austenite formation in low-carbon steel during high speed heating induced by high-speed deformation [J]. Met. Sci. Heat Treat., 2020, 62: 315
doi: 10.1007/s11041-020-00560-x
|
10 |
Hillert M, Nilsson K, Torndahl L E. Effect of alloying elements on the formation of austenite and dissolution of cementite [J]. J. Iron Steel Inst., 1971, 209: 49
|
11 |
Mancini R, Budde C. Reaustenitisation in Fe-C steels revisited [J]. Acta Mater., 1999, 47: 2907
doi: 10.1016/S1359-6454(99)00171-8
|
12 |
Chae J Y, Jang J H, Zhang G H, et al. Dilatometric analysis of cementite dissolution in hypereutectoid steels containing Cr [J]. Scr. Mater., 2011, 65: 245
doi: 10.1016/j.scriptamat.2011.04.018
|
13 |
Nishibata T, Hayashi K, Saito T, et al. Influence of morphology of cementite on kinetics of austenitization in the binary Fe-C system [J]. Mater. Trans., 2020, 61: 1740
doi: 10.2320/matertrans.MT-M2019342
|
14 |
Fridberg J, Torndahl L E, Hillert M. Diffusion in iron [J]. Jernkontorets Ann., 1969, 153: 263
|
15 |
Akbay T, Atkinson C. The influence of diffusion of carbon in ferrite as well as in austenite on a model of reaustenitization from ferrite/cementite mixtures in Fe-C steels [J]. J. Mater. Sci., 1996, 31: 2221
doi: 10.1007/BF01152931
|
16 |
Kapturkiewicz W, Fraś E, Burbelko A A. Computer simulation of the austenitizing process in cast iron with pearlitic matrix [J]. Mater. Sci. Eng., 2005, A413-414: 352
|
17 |
Miyamoto G, Usuki H, Li Z D, et al. Effects of Mn, Si and Cr addition on reverse transformation at 1073K from spheroidized cementite structure in Fe-0.6mass% C alloy [J]. Acta Mater., 2010, 58: 4492
doi: 10.1016/j.actamat.2010.04.045
|
18 |
Wu Y X, Wang L Y, Sun W W, et al. Austenite formation kinetics from multicomponent cementite-ferrite aggregates [J]. Acta Mater., 2020, 196: 470
doi: 10.1016/j.actamat.2020.07.001
|
19 |
Li Y Q, He Y, Liu J H, et al. Phase transformation and microstructure evolution of pearlite heat-resistant steel during heating [J]. Mater. Sci. Technol., 2020, 36: 771
doi: 10.1080/02670836.2020.1738071
|
20 |
Khan A R, Yu S F, Zubair M. Direct observation of austenite and pearlite formation in thermally simulated coarse grain heat-affected zone of pearlite railway steel [J]. J. Mater. Eng. Perform., 2021, 30: 497
doi: 10.1007/s11665-020-05327-2
|
21 |
Li Z D, Miyamoto G, Yang Z G, et al. Kinetics of reverse transformation from pearlite to austenite in an Fe-0.6 mass pct C alloy and the effects of alloying elements [J]. Metall. Mater. Trans., 2011, 42A: 1586
|
22 |
Yang Z N, Xia Y, Enomoto M, et al. Effect of alloying element partition in pearlite on the growth of austenite in high-carbon low alloy steel [J]. Metall. Mater. Trans., 2016, 47A: 1019
|
23 |
Yang Z N, Enomoto M, Zhang C, et al. Transition between alloy-element partitioned and non-partitioned growth of austenite from a ferrite and cementite mixture in a high-carbon low-alloy steel [J]. Philos. Mag. Lett., 2016, 96: 256
doi: 10.1080/09500839.2016.1197432
|
24 |
Chen L Q. Phase-field models for microstructure evolution [J]. Ann. Rev. Mater. Res., 2002, 32: 113
doi: 10.1146/matsci.2002.32.issue-1
|
25 |
Militzer M. Phase field modeling of microstructure evolution in steels [J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 106
doi: 10.1016/j.cossms.2010.10.001
|
26 |
Nakajima K, Apel M, Steinbach I. The role of carbon diffusion in ferrite on the kinetics of cooperative growth of pearlite: A multi-phase field study [J]. Acta Mater., 2006, 54: 3665
doi: 10.1016/j.actamat.2006.03.050
|
27 |
Steinbach I, Apel M. The influence of lattice strain on pearlite formation in Fe-C [J]. Acta Mater., 2007, 55: 4817
doi: 10.1016/j.actamat.2007.05.013
|
28 |
Loginova I, Odqvist J, Amberg G, et al. The phase-field approach and solute drag modeling of the transition to massive γ→α transformation in binary Fe-C alloys [J]. Acta Mater., 2003, 51: 1327
doi: 10.1016/S1359-6454(02)00527-X
|
29 |
Huang C J, Browne D J, McFadden S. A phase-field simulation of austenite to ferrite transformation kinetics in low carbon steels [J]. Acta Mater., 2006, 54: 11
doi: 10.1016/j.actamat.2005.08.033
|
30 |
Militzer M, Azizi-Alizamini H. Phase field modelling of austenite formation in low carbon steels [J]. Solid State Phenom., 2011, 172-174: 1050
doi: 10.4028/www.scientific.net/SSP.172-174
|
31 |
|
32 |
Rudnizki J, Böttger B, Prahl U, et al. Phase-field modeling of austenite formation from a ferrite plus pearlite microstructure during annealing of cold-rolled dual-phase steel [J]. Metall. Mater. Trans., 2011, 42A: 2516
|
33 |
Zhang X, Shen G, Li C W, et al. Phase-field simulation of austenite reversion in a Fe-9.6Ni-7.1Mn (at.%) martensitic steel governed by a coupled diffusional/displacive mechanism [J]. Mater. Des., 2020, 188: 108426
doi: 10.1016/j.matdes.2019.108426
|
34 |
Tiaden J, Nestler B, Diepers H J, et al. The multiphase-field model with an integrated concept for modelling solute diffusion [J]. Physica, 1998, 115D: 73
|
35 |
Li S, Yang Z N, Enomoto M, et al. Study of partition to non-partition transition of austenite growth along pearlite lamellae in near-eutectoid Fe-C-Mn alloy [J]. Acta Mater., 2019, 177: 198
doi: 10.1016/j.actamat.2019.07.038
|
36 |
Yang Z N. Effects of alloying element partition and its interfacial segregation on the thermodynamics and kinetics of phase transformation in steels [D]. Beijing: Tsinghua University, 2017
|
36 |
杨泽南. 合金元素配分与偏聚对钢中相变热力学及动力学的影响 [D]. 北京: 清华大学, 2017
|
37 |
Karmazin L. Experimental study of the austenitization process of hypereutectoid steel alloyed with small amounts of silicon, manganese and chromium, and with an initial structure of globular cementite in a ferrite matrix [J]. Mater. Sci. Eng., 1991, A142: 71
|
38 |
Gaude-Fugarolas D, Bhadeshia H K D H. A model for austenitisation of hypoeutectoid steels [J]. J. Mater. Sci., 2003, 38: 1195
doi: 10.1023/A:1022805719924
|
39 |
Roósz A, Gácsi Z, Fuchs E G. Isothermal formation of austenite in eutectoid plain carbon steel [J]. Acta Metall., 1983, 31: 509
doi: 10.1016/0001-6160(83)90039-1
|
40 |
Chen R C, Zheng Z Z, Li N, et al. In-situ investigation of phase transformation behaviors of 300M steel in continuous cooling process [J]. Mater. Charact., 2018, 144: 400
doi: 10.1016/j.matchar.2018.07.034
|
41 |
Haroun N A. Grain size statistics [J]. J. Mater. Sci., 1981, 16: 2257
doi: 10.1007/BF00542388
|
42 |
Yu Y N. Fundamentals of Material [M]. 2nd Ed., Beijing: Higher Education Press, 2012: 650
|
42 |
余永宁. 材料科学基础 [M]. 第2版. 北京: 高等教育出版社, 2012: 650
|
43 |
Sun W W, Wu Y X, Yang S C, et al. Advanced high strength steel (AHSS) development through chemical patterning of austenite [J]. Scr. Mater., 2018, 146: 60
doi: 10.1016/j.scriptamat.2017.11.007
|
44 |
Speich G R, Demarest V A, Miller R L. Formation of austenite during intercritical annealing of dual-phase steels [J]. Metall. Mater. Trans., 1981, 12A: 1419
|
45 |
Yu Y N. Principles of the Metallography [M]. 3rd Ed., Beijing: Metallurgical Industry Press, 2020: 530
|
45 |
余永宁. 金属学原理 [M]. 第3版. 北京: 冶金工业出版社, 2020: 530
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|