Please wait a minute...
金属学报  2022, Vol. 58 Issue (2): 141-154    DOI: 10.11900/0412.1961.2020.00446
  研究论文 本期目录 | 过刊浏览 |
Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能
化雨1, 陈建国2, 余黎明1, 司永宏2, 刘晨曦1(), 李会军1, 刘永长1()
1.天津大学 材料科学与工程学院 水利安全与仿真国家重点实验室 天津 300354
2.天津市特种设备监督检验技术研究院 天津 300192
Microstructure Evolution and Mechanical Properties of Dissimilar Material Diffusion-Bonded Joint for High Cr Ferrite Heat-Resistant Steel and Austenitic Heat-Resistant Steel
HUA Yu1, CHEN Jianguo2, YU Liming1, SI Yonghong2, LIU Chenxi1(), LI Huijun1, LIU Yongchang1()
1.State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
2.Tianjin Special Equipment Inspection Institute, Tianjin 300192, China
引用本文:

化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. 高Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
Yu HUA, Jianguo CHEN, Liming YU, Yonghong SI, Chenxi LIU, Huijun LI, Yongchang LIU. Microstructure Evolution and Mechanical Properties of Dissimilar Material Diffusion-Bonded Joint for High Cr Ferrite Heat-Resistant Steel and Austenitic Heat-Resistant Steel[J]. Acta Metall Sin, 2022, 58(2): 141-154.

全文: PDF(5701 KB)   HTML
摘要: 

开展了高Cr铁素体耐热钢与TP347H奥氏体耐热钢的异种材料真空扩散连接实验,研究了扩散连接时间及焊后热处理工艺对扩散影响区组织演变和力学性能的影响。结果表明,随着扩散连接时间的延长,界面结合率逐渐增加。变形储存能差异与位错滑移的相互作用下,在扩散连接界面处发生动态再结晶形成了细小晶粒,最终演化成锯齿状的界面结合形态。扩散连接区晶界与晶粒内部析出细小弥散的MXM23C6相。焊后热处理之后扩散连接区的晶粒进一步细化,位错相对稳定化,位错密度减少,小角度晶界增多,元素扩散更加充分。对获得的扩散连接试样进行不同温度的拉伸实验,断裂位置均位于基体中,说明获得了高质量的异种材料扩散连接接头。

关键词 高Cr铁素体耐热钢TP347H奥氏体耐热钢扩散连接显微组织力学性能    
Abstract

High Cr ferrite heat-resistant steel has excellent geometric structure stability, low radiation swelling rate, and good corrosion resistance of liquid metal. TP347H austenitic heat-resistant steel is based on the traditional 18-8 austenitic steel with the addition of a certain amount of Nb and a small amount of N to precipitate MX-type carbonitride, which results in superior high-temperature properties. Steam with high temperature and pressure flowing through supercritical thermal power units may exhibit heterogeneous connections between high Cr ferrite and austenitic heat-resistant steel components in the supercritical thermal power units. In this study, the vacuum diffusion-bonding of dissimilar materials between high Cr ferritic and TP347H austenitic heat-resistant steel was performed, the effects of diffusion-bonding time and post weld heat treatment (PWHT) process on the microstructural evolution and mechanical properties of the diffusion-affected zone was examined. The results indicated that with the extension of diffusion-bonding time, the interfacial bonding rate gradually increased. The interaction due to the difference in deformation storage energy and dislocation slips resulted in dynamic recrystallization, and the fine grains formed at the diffusion-bonding interface evolved into a serrated interface. Fine and dispersed MX and M23C6 phases were precipitated in the austenite grain boundaries and at the grain boundaries of the diffusion-bonding zone. After PWHT, the grains in the diffusion-bonding zone were further refined, dislocations were stable, dislocation density reduced, small-angle grain boundaries increased, and element diffusion was more sufficient. Tensile tests at different temperatures showed that the fractured sites were all in the matrix, which indicates that high-quality diffusion-bonding joints of dissimilar materials were achieved.

Key wordshigh Cr ferritic heat-resistant steel    TP347H austenitic heat-resistant steel    diffusion-bonding    microstructure    mechanical property
收稿日期: 2020-11-04     
ZTFLH:  TG457.1  
基金资助:国家自然科学基金项目(52034004);天津市自然科学基金项目(18JCQNJC03300)
作者简介: 刘永长,ycliu@tju.edu.cn,主要从事高温金属结构材料及固相连接的研究
化 雨,女,1997年生,硕士生
MaterialCCrWMnSiVTaPMoNiNbNFe
High Cr F0.0928.871.710.280.010.190.002< 0.005----Bal.
TP347H0.05917.6-1.59---0.0240.11610.710.540.013Bal.
表1  实验用材料的化学成分 (mass fraction / %)
图1  实验工艺曲线示意图(a) diffusion-bonding (tp—the time to apply pressure) (b) post weld heat treatment (PWHT) (AC—air cooling)
图2  25和600℃拉伸试样示意图(a) 25oC (b) 600oC
图3  扩散连接试样母材的OM像(a) high Cr heat-resistant steel sample(b) TP347H austenitic heat-resistant steel sample
图4  连接温度1050℃、连接压力15 MPa,不同扩散连接时间条件下扩散连接试样接头微观组织的低倍和高倍OM像及SEM像(a1-a3) 5 min (b1-b3) 15 min (c1-c3) 30 min (d1-d3) 60 min (e1-e3) 120 min
图5  不同扩散连接时间的界面结合率
图6  连接温度1050℃、连接压力15 MPa、连接时间120 min的扩散连接试样扩散连接区经焊后热处理后的SEM像
图7  焊后热处理之前扩散连接试样扩散连接区的EBSD分析(a) EBSD image of joint area(b) grain diagram of diffusion-bonding zone in rectangle area in Fig.7a(c) phase diagram of diffusion-bonding zone in rectangle area in Fig.7a(d) dislocation density diagram of diffusion-bonding zone of TP347H austenitic heat-resistant steel in rectangle area in Fig.7a(e) dislocation density diagram of diffusion-bonding zone of high Cr ferrite heat-resistant steel in rectangle area in Fig.7a
图8  焊后热处理之后扩散连接试样扩散连接区的EBSD分析(a) EBSD image of joint area(b) grain diagram of diffusion-bonding zone in rectangle area in Fig.8a(c) phase diagram of diffusion-bonding zone in rectangle area in Fig.8a(d) dislocation density diagram of diffusion-bonding zone of TP347H austenitic heat-resistant steel in rectangle area in Fig.8a(e) dislocation density diagram of diffusion-bonding zone of high Cr ferrite heat-resistant steel in rectangle area in Fig.8a
图9  焊后热处理之前扩散连接试样扩散连接区的TEM分析(a) TEM image of the joint (b, c) SAED patterns of the joint for left and right sides of diffusion-bonding interface showed by dash line in Fig.9a, respectively (d) SAED pattern of the precipitate A in Fig.9a (e) EDS of the precipitate A in Fig.9a
图10  焊后热处理之后扩散连接试样扩散连接区的TEM分析(a) TEM image of the joint (b, c) SAED patterns of the joint for left and right sides of diffusion-bonding interface showed by dash line in Fig.10a, respectively (d) SAED pattern of the precipitate A in Fig.10a (e) EDS of the precipitate A in Fig.10a
图11  焊后热处理之后的扩散连接试样扩散连接区EDS线扫描结果
SpecificationTemperature / oCAverage tensile strength / MPaRp0.2 / MPaElongation / %Shrinkage / %
Before PWHT25601.68263.5633.0550.66
600322.45153.7921.7947.62
After PWHT25558.82249.3724.7431.69
600290.45153.3812.2629.34
表2  焊后热处理前后扩散连接试样接头的拉伸实验结果
图12  拉伸断裂试样实物图(a) 25oC (b) 600oC
图13  不同测试温度下焊后热处理前后扩散连接试样的工程应力-应变曲线
图14  焊后热处理前后扩散连接试样接头在25℃拉伸的断口形貌
图15  焊后热处理前后扩散连接试样接头在600℃拉伸的断口形貌
1 Wang J Z , Liu Z D , Bao H S , et al . Study of steel and alloys for ultra-supercritical power plant in China [J]. Iron Steel, 2015, 50(8): 1
1 王敬忠, 刘正东, 包汉生 等 . 中国超超临界电站锅炉关键材料用钢及合金的研究现状 [J]. 钢铁, 2015, 50(8): 1
2 Chi C Y , Yu H Y , Xie X C . Research and development of austenitic heat-resistant steels for 600oC superheat/reheater tubes of USC power plant boilers [J]. World Iron Steel, 2012, 12(4): 50
2 迟成宇, 于鸿垚, 谢锡善 . 600℃超超临界电站锅炉过热器及再热器管道用先进奥氏体耐热钢的研究与发展 [J]. 世界钢铁, 2012, 12(4): 50
3 Liu Z D , Chen Z Z , He X K , et al . Systematical innovation of heat resistant materials used for 630-700oC advanced ultra-supercritical (A-USC) fossil fired boilers [J]. Acta Metall. Sin., 2020, 56: 539
3 刘正东, 陈正宗, 何西扣 等 . 630~700℃超超临界燃煤电站耐热管及其制造技术进展 [J]. 金属学报, 2020, 56: 539
4 Yuan Y , Zhong Z H , Yu Z S , et al . Microstructural evolution and compressive deformation of a new Ni-Fe base superalloy after long term thermal exposure at 700oC [J]. Mater. Sci. Eng., 2014, A619: 364
5 Li C Y , Yan W P . Element composition and property analysis of high-temperature alloy steel for supercritical boiler [J]. Electr. Power, 2007, 40(8): 52
5 李春燕, 阎维平 . 超临界锅炉高温合金钢合金元素组成与性能分析 [J]. 中国电力, 2007, 40(8): 52
6 Peng Y Y , Yu L M , Liu Y C , et al . Effect of aging treatment at 650oC on microstructure and properties of 9Cr-ODS steel [J]. Acta Metall. Sin., 2020, 56: 1075
6 彭艳艳, 余黎明, 刘永长 等 . 650℃时效对9Cr-ODS钢显微组织和性能的影响 [J]. 金属学报, 2020, 56: 1075
7 Xu H J , Zhao W W , Wang C C , et al . Microstructures and mechanical properties of welding joint of 1.4003 ferritic stainless steel and 0Cr18Ni9 austenitic stainless steel [J]. Weld. Technol., 2008, 37(6): 12
7 许鸿吉, 赵雯雯, 王春生 等 . 1.4003不锈钢与0Cr18Ni9不锈钢焊接接头组织和力学性能 [J]. 焊接技术, 2008, 37(6): 12
8 Muthupandi V , Bala Srinivasan P , Seshadri S K , et al . Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds [J]. Mater. Sci. Eng., 2003, A358: 9
9 Jang C , Lee J , Sung Kim J , et al . Mechanical property variation within Inconel 82/182 dissimilar metal weld between low alloy steel and 316 stainless steel [J]. Int. J. Press. Vessels Pip., 2008, 85: 635
10 Thakare J G , Pandey C , Mahapatra M M , et al . An assessment for mechanical and microstructure behavior of dissimilar material welded joint between nuclear grade martensitic P91 and austenitic SS304 L steel [J]. J. Manuf. Processes, 2019, 48: 249
11 Li G F , Charles E A , Congleton J . Effect of post weld heat treatment on stress corrosion cracking of a low alloy steel to stainless steel transition weld [J]. Corros. Sci., 2001, 43: 1963
12 Liu C X , Mao C L , Cui L , et al . Recent progress in microstructural control and solid-state welding of reduced activation ferritic/martensitic steels [J]. Acta Metall. Sin., 2021, 57: 1521
12 刘晨曦, 毛春亮, 崔 雷 等 . 低活化铁素体/马氏体钢组织调控及其固相连接研究进展 [J]. 金属学报, 2021, 57: 1521
13 Solonin M I , Chernov V M , Gorokhov V A , et al . Present status and future prospect of the Russian program for fusion low-activation materials [J]. J. Nucl. Mater., 2000, 283-287: 1468
14 Balasubramanian V , Fernandus M J , Senthilkumar T . Development of processing windows for diffusion bonding of aluminium/magnesium dissimilar materials [J]. Weld. World, 2013, 57: 523
15 Huang P , Wang Y M , Peng H B , et al . Diffusion bonding W and RAFM-steel with an Fe interlayer by hot isostatic pressing [J]. Fusion Eng. Des., 2020, 158: 111796
16 Chen J G , Liu C X , Wei C , et al . Study on microstructure and mechanical properties of direct diffusion bonded low-carbon RAFM steels [J]. J. Manuf. Processes, 2019, 43: 192
17 Zhou Y H , Liu Y C , Zhou X S , et al . Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel [J]. J. Mater. Res., 2015, 30: 2090
18 Ma R F , Li M Q , Li H , et al . Modeling of void closure in diffusion bonding process based on dynamic conditions [J]. Sci. China Technol. Sci., 2012, 55: 2420
19 Yuan L , Xiong J T , Peng Y , et al . Modeling void closure in solid-state diffusion bonding of TC4 alloy [J]. Vacuum, 2012, 173: 109120
20 Wang Z C , Ridley N , Lorimer G W , et al . Evaluation of diffusion bonds formed between superplastic sheet materials [J]. J. Mater. Sci., 1996, 31: 5199
21 Pandey C , Mahapatra M M , Kumar P . Effect of post weld heat treatments on fracture frontier and type IV cracking nature of the crept P91 welded sample [J]. Mater. Sci. Eng., 2018, A731: 249
22 Fang Y J , Jiang X S , Mo D F , et al . Microstructure and mechanical properties of the vacuum diffusion bonding joints of 4J29 kovar alloy and 316L stainless steel using pure cobalt interlayer [J]. Vacuum, 2019, 168: 108847
23 Shi L , Liang F M , Yin H Q , et al . Effects of solid solution and aging on microstructure of TP347H heat resistant steel for supercritical generator set [J]. Hot Work. Technol., 2019, 48(18): 123
23 石 磊, 梁凤敏, 尹洪泉 等 . 固溶/时效对超超临界火电机组用TP347H耐热钢组织的影响 [J]. 热加工工艺, 2019, 48(18): 123
24 Mao C L , Liu C X , Yu L M , et al . Discontinuous lath martensite transformation and its relationship with annealing twin of parent austenite and cooling rate in low carbon RAFM steel [J]. Mater. Des., 2021, 197: 109252
25 Xu Y B , Yu Y M , Liu X H , et al . Modeling of microstructure evolution and mechanical properties during hot-strip rolling of Nb steels [J]. J. Univ. Sci. Technol. Beijing, Miner., Metall., Mater., 2008, 15: 396
26 Bacca M , Hayhurst D R , McMeeking R M . Continuous dynamic recrystallization during severe plastic deformation [J]. Mech. Mater., 2015, 90: 148
27 Zhou X S , Liu Y C , Yu L M , et al . Uniaxial diffusion bonding of CLAM/CLAM steels: Microstructure and mechanical performance [J]. J. Nucl. Mater., 2015, 461: 301
28 Chen J G , Liu C X , Liu Y C , et al . Effects of tantalum content on the microstructure and mechanical properties of low-carbon RAFM steel [J]. J. Nucl. Mater., 2016, 479: 295
29 Yan B Y , Liu Y C , Wang Z J , et al . The effect of precipitate evolution on austenite grain growth in RAFM steel [J]. Materials, 2017, 10: 1017
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.