Please wait a minute...
金属学报  2010, Vol. 46 Issue (5): 589-594    DOI: 10.3724/SP.J.1037.2009.00802
  论文 本期目录 | 过刊浏览 |
铝合金/镁合金搅拌摩擦焊接界面处Mg/Al反应及接头力学性能
王东1); 刘杰2);  肖伯律1);  马宗义1)
1) 中国科学院金属研究所沈阳材料科学国家(联合)实验室; 沈阳 110016
2) 中航工业黎明公司; 沈阳 110043
Mg/Al REACTION AND MECHANICAL PROPERTIES OF Al ALLOY/Mg ALLOY FRICTION STIR WELDING JOINTS
WANG Dong1);  LIU Jie2);   XIAO Bolv1);  MA Zongyi1)
1) Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
2) Shenyang Liming Corporation; Aviation Industry Corporation of China; Shenyang 110043
全文: PDF(742 KB)  
摘要: 

采用搅拌针置中(M4A4)、向镁合金侧偏置2 mm (M6A2)和向铝合金侧偏置2 mm (A6M2) 3种焊接方式, 研究了6 mm厚6061--T651铝合金和AZ31镁合金轧制板材的搅拌摩擦焊接. SEM及XRD分析表明, 3种焊接方式均在焊接界面处发现Mg17Al12相的生成和由于共晶相熔化和随后冷却所形成的孔洞. 在M4A4和M6A2样品中, 少量的Al搅入到镁合金侧形成金属间化合物Mg17Al12, 而在A6M2样品中, 少量的Mg搅入到铝合金中也形成金属间化合物Mg17Al12, 在Mg17Al12与基体的界面处存在微小孔洞. 由于焊核区仅有少量的Mg17Al12生成, 其硬度变化并不显著. 焊接界面处生成的金属间化合物及孔洞显著降低接头的拉伸性能.

关键词 搅拌摩擦焊异种材料焊接6061铝合金 AZ31镁合金显微组织    
Abstract

Mg alloys are increasingly used in aerospace, aircraft and automotives structures due to the low density and good damping properties, especially, the welding of Mg alloy to Al alloys is of practical importance for widening the application of Mg alloys. Although friction stir welding (FSW) has been used to join Mg and Al alloys, defect free joints are achieved only in the thin plate (less than 4 mm). In this paper, three ways of FSW of 6 mm thick 6061--T651 Al alloy and AZ31 Mg alloy plates, offsetting the pin to the seam between the two plates (M4A4), to the Mg alloy side 2 mm (M6A2) and to the Al alloy side 2 mm (A6M2), were studied. The aim is to examine the effects of the relative position between tool and plate on the microstructure and mechanical properties of FSW Mg/Al alloys joint. SEM and XRD analyses revealed the formations of intermetallics Mg17Al12 and voids in the interface between Mg and Al alloy plates in the three FSW samples. The voids are resulted from the melting and subsequent solidification of eutectic. In the M4A4 and M6A2 samples, some Al are stirred into the Mg alloy side during FSW, forming the Mg17Al12,  whereas in the A6M2 sample, some Mg stirred into the Al alloy side are also transformed to the Mg17Al12. Some fine pores are observed around the Mg17Al12. The hardness of the nugget zone exhibits a slight increase due to the formation of a small amount of Mg17Al12. The intermetallics and pores at the jointed interface decrease the strength of the joints significantly.

Key wordsfriction stir welding    dissimilar alloy welding    6061 Al alloy    AZ31 Mg alloy    microstructure
收稿日期: 2009-12-01     
基金资助:

国家杰出青年科学基金项目50525103及中国科学院百人计划研究项目资助

通讯作者: 马宗义     E-mail: zyma@imr.ac.cn
Corresponding author: MA Zongyi     E-mail: zyma@imr.ac.cn
作者简介: 王东, 男, 1980年生, 助理研究员, 硕士

引用本文:

王东 刘杰 肖伯律 马宗义. 铝合金/镁合金搅拌摩擦焊接界面处Mg/Al反应及接头力学性能[J]. 金属学报, 2010, 46(5): 589-594.
YU Dong, LIU Jie, XIAO Ba-Lv, MA Zong-Xi. Mg/Al REACTION AND MECHANICAL PROPERTIES OF Al ALLOY/Mg ALLOY FRICTION STIR WELDING JOINTS. Acta Metall Sin, 2010, 46(5): 589-594.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2009.00802      或      https://www.ams.org.cn/CN/Y2010/V46/I5/589

[1] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37
[2] Hatch J E. Aluminum Properties and Physical Metallurgy, Metals Park, Ohio: American Society for Metals, 1984: 1
[3] Liu P, Li Y J, Geng H R, Wang J. Mater Lett, 2007; 61: 1288
[4] Liu L M, Liu X J, Liu S H. Scr Mater, 2006; 55: 383
[5] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1
[6] Ren S R, Ma Z Y, Chen L Q. Acta Metall Sin, 2007; 42: 225
(任淑荣, 马宗义, 陈礼清. 金属学报, 2007; 42: 225)

[7] Xie G M, Ma Z Y, Geng L. Acta Metall Sin, 2008; 44: 655
(谢广明, 马宗义, 耿 林. 金属学报, 2008; 44: 655)

[8] Xie G M, Ma Z Y, Geng L. J Mater Sci Technol, 2009; 25: 351
[9] Khodir S A, Shibayanagi T. Mater Trans, 2007; 48: 2501
[10] Somasekharan A C, Murr L E. Mater Charact, 2004; 52: 49
[11] Yan J C, Xu Z W, Li Z Y, Li L, Yang S Q. Scr Mater, 2005; 53: 585
[12] Kostka A, Coelho R S, Santos J D, Pyzallac A R. Scr Mater, 2009; 60: 953
[13] Sato Y S, Park S H C, Michiuchi M, Kokawa H. Scr Mater, 2004; 50: 1233
[14] Chen Z W, Cui S. Scr Mater, 2008; 58: 417
[15] Prangnell P B, Heason C P. Acta Mater, 2005; 53: 3179
[16] Fatemi–Varzaneh S M, Zarei–Hanzaki A, Haghshenas M. Mater Sci Eng, 2008; A497: 438
[17] Wang Z T, Tian R Z. Handbook of Aluminum Alloy and Processing. 3rd, Changsha: Central South University Press, 2005: 317
(王祝堂, 田荣璋. 铝合金及其加工手册(第3版). 长沙: 中南大学出版社, 2005: 317)

[18] Feng A H, Ma Z Y. Scr Mater, 2007; 56: 397
[19] Mahoney M W, Rhodes C G, Flintoff J G, Spurling R A, Bingel W H. Metall Mater Trans, 1998; 29A: 1955
[20] Yang J, Xiao B L, Wang D, Ma Z Y. Mater Sci Eng, 2010; A527: 708
[21] Liu F C, Ma Z Y. Metall Mater Trans, 2008; 39A: 2378

[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[3] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[4] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[5] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[6] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[7] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[8] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[9] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[10] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[11] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[12] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[13] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[14] 何波, 邢盟, 杨光, 邢飞, 刘祥宇. 成分梯度对激光沉积制造TC4/TC11连接界面组织和性能的影响[J]. 金属学报, 2019, 55(10): 1251-1259.
[15] 田甜, 郝志博, 贾崇林, 葛昌纯. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报, 2019, 55(10): 1260-1272.