Please wait a minute...
金属学报  2010, Vol. 46 Issue (5): 589-594    DOI: 10.3724/SP.J.1037.2009.00802
  论文 本期目录 | 过刊浏览 |
铝合金/镁合金搅拌摩擦焊接界面处Mg/Al反应及接头力学性能
王东1); 刘杰2);  肖伯律1);  马宗义1)
1) 中国科学院金属研究所沈阳材料科学国家(联合)实验室; 沈阳 110016
2) 中航工业黎明公司; 沈阳 110043
Mg/Al REACTION AND MECHANICAL PROPERTIES OF Al ALLOY/Mg ALLOY FRICTION STIR WELDING JOINTS
WANG Dong1);  LIU Jie2);   XIAO Bolv1);  MA Zongyi1)
1) Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
2) Shenyang Liming Corporation; Aviation Industry Corporation of China; Shenyang 110043
引用本文:

王东 刘杰 肖伯律 马宗义. 铝合金/镁合金搅拌摩擦焊接界面处Mg/Al反应及接头力学性能[J]. 金属学报, 2010, 46(5): 589-594.
, , , . Mg/Al REACTION AND MECHANICAL PROPERTIES OF Al ALLOY/Mg ALLOY FRICTION STIR WELDING JOINTS[J]. Acta Metall Sin, 2010, 46(5): 589-594.

全文: PDF(742 KB)  
摘要: 

采用搅拌针置中(M4A4)、向镁合金侧偏置2 mm (M6A2)和向铝合金侧偏置2 mm (A6M2) 3种焊接方式, 研究了6 mm厚6061--T651铝合金和AZ31镁合金轧制板材的搅拌摩擦焊接. SEM及XRD分析表明, 3种焊接方式均在焊接界面处发现Mg17Al12相的生成和由于共晶相熔化和随后冷却所形成的孔洞. 在M4A4和M6A2样品中, 少量的Al搅入到镁合金侧形成金属间化合物Mg17Al12, 而在A6M2样品中, 少量的Mg搅入到铝合金中也形成金属间化合物Mg17Al12, 在Mg17Al12与基体的界面处存在微小孔洞. 由于焊核区仅有少量的Mg17Al12生成, 其硬度变化并不显著. 焊接界面处生成的金属间化合物及孔洞显著降低接头的拉伸性能.

关键词 搅拌摩擦焊异种材料焊接6061铝合金 AZ31镁合金显微组织    
Abstract

Mg alloys are increasingly used in aerospace, aircraft and automotives structures due to the low density and good damping properties, especially, the welding of Mg alloy to Al alloys is of practical importance for widening the application of Mg alloys. Although friction stir welding (FSW) has been used to join Mg and Al alloys, defect free joints are achieved only in the thin plate (less than 4 mm). In this paper, three ways of FSW of 6 mm thick 6061--T651 Al alloy and AZ31 Mg alloy plates, offsetting the pin to the seam between the two plates (M4A4), to the Mg alloy side 2 mm (M6A2) and to the Al alloy side 2 mm (A6M2), were studied. The aim is to examine the effects of the relative position between tool and plate on the microstructure and mechanical properties of FSW Mg/Al alloys joint. SEM and XRD analyses revealed the formations of intermetallics Mg17Al12 and voids in the interface between Mg and Al alloy plates in the three FSW samples. The voids are resulted from the melting and subsequent solidification of eutectic. In the M4A4 and M6A2 samples, some Al are stirred into the Mg alloy side during FSW, forming the Mg17Al12,  whereas in the A6M2 sample, some Mg stirred into the Al alloy side are also transformed to the Mg17Al12. Some fine pores are observed around the Mg17Al12. The hardness of the nugget zone exhibits a slight increase due to the formation of a small amount of Mg17Al12. The intermetallics and pores at the jointed interface decrease the strength of the joints significantly.

Key wordsfriction stir welding    dissimilar alloy welding    6061 Al alloy    AZ31 Mg alloy    microstructure
收稿日期: 2009-12-01     
基金资助:

国家杰出青年科学基金项目50525103及中国科学院百人计划研究项目资助

作者简介: 王东, 男, 1980年生, 助理研究员, 硕士

[1] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37
[2] Hatch J E. Aluminum Properties and Physical Metallurgy, Metals Park, Ohio: American Society for Metals, 1984: 1
[3] Liu P, Li Y J, Geng H R, Wang J. Mater Lett, 2007; 61: 1288
[4] Liu L M, Liu X J, Liu S H. Scr Mater, 2006; 55: 383
[5] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1
[6] Ren S R, Ma Z Y, Chen L Q. Acta Metall Sin, 2007; 42: 225
(任淑荣, 马宗义, 陈礼清. 金属学报, 2007; 42: 225)

[7] Xie G M, Ma Z Y, Geng L. Acta Metall Sin, 2008; 44: 655
(谢广明, 马宗义, 耿 林. 金属学报, 2008; 44: 655)

[8] Xie G M, Ma Z Y, Geng L. J Mater Sci Technol, 2009; 25: 351
[9] Khodir S A, Shibayanagi T. Mater Trans, 2007; 48: 2501
[10] Somasekharan A C, Murr L E. Mater Charact, 2004; 52: 49
[11] Yan J C, Xu Z W, Li Z Y, Li L, Yang S Q. Scr Mater, 2005; 53: 585
[12] Kostka A, Coelho R S, Santos J D, Pyzallac A R. Scr Mater, 2009; 60: 953
[13] Sato Y S, Park S H C, Michiuchi M, Kokawa H. Scr Mater, 2004; 50: 1233
[14] Chen Z W, Cui S. Scr Mater, 2008; 58: 417
[15] Prangnell P B, Heason C P. Acta Mater, 2005; 53: 3179
[16] Fatemi–Varzaneh S M, Zarei–Hanzaki A, Haghshenas M. Mater Sci Eng, 2008; A497: 438
[17] Wang Z T, Tian R Z. Handbook of Aluminum Alloy and Processing. 3rd, Changsha: Central South University Press, 2005: 317
(王祝堂, 田荣璋. 铝合金及其加工手册(第3版). 长沙: 中南大学出版社, 2005: 317)

[18] Feng A H, Ma Z Y. Scr Mater, 2007; 56: 397
[19] Mahoney M W, Rhodes C G, Flintoff J G, Spurling R A, Bingel W H. Metall Mater Trans, 1998; 29A: 1955
[20] Yang J, Xiao B L, Wang D, Ma Z Y. Mater Sci Eng, 2010; A527: 708
[21] Liu F C, Ma Z Y. Metall Mater Trans, 2008; 39A: 2378

[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[8] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[9] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[10] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[11] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[12] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[13] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[14] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[15] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.