Please wait a minute...
金属学报  2010, Vol. 46 Issue (5): 595-599    DOI: 10.3724/SP.J.1037.2009.00773
  论文 本期目录 | 过刊浏览 |
热镀锌TRIP钢中马氏体对力学性能的影响
定巍 唐荻 江海涛 黄伟
北京科技大学高效轧制国家工程研究中心; 北京 100083
INFLUENCE OF MARTENSITE ON MECHANICAL PROPERTIES OF HOT-DIP GALVANIZED TRIP STEEL
DING Wei; TANG Di; JIANG Haitao; HUANG Wei
National Engineering Research Center for Advanced Rolling Technology; University of Science & Technology Beijing; Beijing 100083
引用本文:

定巍 唐荻 江海涛 黄伟. 热镀锌TRIP钢中马氏体对力学性能的影响[J]. 金属学报, 2010, 46(5): 595-599.
, , , . INFLUENCE OF MARTENSITE ON MECHANICAL PROPERTIES OF HOT-DIP GALVANIZED TRIP STEEL[J]. Acta Metall Sin, 2010, 46(5): 595-599.

全文: PDF(699 KB)  
摘要: 

利用SEM, TEM, XRD, 相变实验和拉伸实验等方法, 分析测试了3种热处理工艺下热镀锌TRIP钢的微观组织、相变产物和力学性能, 并运用碳扩散平衡理论分析了不同热处理工艺下实验用钢的马氏体量, 研究了马氏体量对力学性能的影响. 研究表明: 贝氏体等温相变时间影响组织中的马氏体量, 当贝氏体转变时间由20 s增加到60 s时, 试样中马氏体量由7.08%减少到1.18%; 马氏体量对力学性能有显著影响, 马氏体量多, 马氏体强化效果占主导, 使试样拥有类似双相钢的力学性能, 同时拥有比双相钢更好的延伸率; 随着马氏体量下降, 马氏体强化效果逐渐下降, 当马氏体量减少到1.18%, 实验用钢逐渐呈现出典型的TRIP钢的力学特性.

关键词 热镀锌TRIP钢热处理马氏体量力学性能    
Abstract

The hot--dip galvanized transformation induced plasticity (TRIP) steel is an advanced automobile steel with excellent mechanical proprieties, which meets the requirements of energy preservation and environment protection. The microstructure and mechanical properties of hot-dip galvanized TRIP steel are different from conventional TRIP steel treated by continuous annealing processing. Three hot-dip galvanizing processes (main difference is isothermal bainitic transformation (IBT) time) are designed according to the characteristics of hot--dip galvanized TRIP steel manufacturing process to study the influence of microstructure on mechanical properties. By means of SEM, TEM, XRD, dilatometry and tensile test, the microstructure characteristic, phase transformation and mechanical properties were investigated. Combined these experimental results and the carbon diffusion balance theory, the content of martensite and its effect on mechanical properties were analyzed. The results show that the IBT time has a significant impact on the content of martensite. The volume fractions of martensite are 7.08%, 4.17% and 1.18%, when IBT times are 20, 30 and 60 s, respectively. Both the transformation induced plasticity of retained austenite and the martensite hardening are effective but the latter plays a dominant role, when the content of martensite is 7.08\% the strength is similar as dual-phase steel, but a better elongation. When the volume fraction of martensite decrease to 1.18%, the mechanical properties are similar to the conventional TRIP steel, as so small amount of martensite has no obvious effect on the mechanical properties. By changing the hot-dip galvanizing process, the amount of martensite and retained austenite can be controlled, and hot-dip galvanized TRIP steel with different mechanical properties can be obtained.

Key wordshot-dip galvanized TRIP steel    heat treatment    martensite amount    mechanical property
收稿日期: 2009-11-23     
基金资助:

国家自然科学基金资助项目50804005

作者简介: 定巍, 男, 回族, 1983年生, 博士生

[1] Tang D, Mi Z L, Cheng Y L. Iron Steel, 2005; 40(6): 1
(唐 荻, 米振莉, 陈雨来. 钢铁, 2005; 40(6): 1)
[2] Zhang Q F, Liu B J, Huang J Z. Modern Continuous Hot Dip Galvanizing of Steel Sheets. Beijing: Metallurgy Industry Press, 2007: 587
(张启富, 刘邦津, 黄建中.现代带钢连续热镀锌. 北京: 冶金工业出版社, 2007: 587)

[3] Zackay V F, Parker E R, Fahr D, Busch R A. Trans ASM, 1967; 60: 252
[4] Matsumura O, Sakuma Y, Takechi H. Scr Metall, 1987; 21: 1301
[5] Jiang H T, Wu H B, Tang D, Liu Q. J Univ Sci Technol Beijing, 2008; 15: 574
[6] Qi J J, Huang Y H, Zhang Y. Microalloyed Steel. Beijing: Metallurgy Industry Press, 2006: 70
(齐俊杰, 黄云华, 张跃. 微合金化钢. 北京: 冶金工业出版社, 2006: 70)

[7] Zhou Y, Wu G H. Analysis Methods in Materials Science. Harbin: Harbin Institute Technology Press, 2007: 95
(周玉, 武高辉. 材料分析测试技术. 哈尔滨: 哈尔滨工业大学出版社, 2007: 95)

[8] Liesbeth B. PhD Thesis, Ghent University, Belgium, 2006
[9] De Cooman B C. Curr Opinion Solid State Mater Sci, 2004; 8: 285
[10] Koistinen D P, Marburger R E. Acta Metall, 1959; 7: 59
[11] Sugimoto K I, Sakaguchi J, Tsutomu I, Kashima T. ISIJ Int, 2000; 4: 920
[12] Speich G R, Demarest V A, Miller R L. Metall Mater Trans, 1981; 12A: 1419
[13] Gilmour J B, Purdy G R, Kirkaldy J S. Metall Mater Trans, 1972; 6A: 1455
[14] Jacques P J, Girault E, Mertens A, Verlinden B, Humbeeck J V, Delannay F. ISIJ Int, 2001; 41: 1068
[15] Kim S J, Lee C G, Lee T H, Oh C S. Scr Mater, 2003; 48: 539

[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.