Please wait a minute...
金属学报  2022, Vol. 58 Issue (5): 610-622    DOI: 10.11900/0412.1961.2021.00200
  研究论文 本期目录 | 过刊浏览 |
添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响
孙蓉蓉1, 姚美意1(), 林晓冬1(), 张文怀1, 仇云龙2, 胡丽娟1, 谢耀平1, 杨健3, 董建新4, 成国光5
1.上海大学 材料研究所 上海 200072
2.中兴能源装备有限公司 海门 226126
3.上海大学 材料科学与工程学院 省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200444
4.北京科技大学 材料科学与工程学院 北京 100083
5.北京科技大学 钢铁冶金新技术国家重点实验室 北京 100083
Effect of Ti on the Corrosion Behavior of Fe22Cr5Al3Mo Alloy in 500oC Superheated Steam
SUN Rongrong1, YAO Meiyi1(), LIN Xiaodong1(), ZHANG Wenhuai1, QIU Yunlong2, HU Lijuan1, XIE Yaoping1, YANG Jian3, DONG Jianxin4, CHENG Guoguang5
1.Institute of Materials, Shanghai University, Shanghai 200072, China
2.Zhongxing Energy Equipment Co., Ltd., Haimen 226126, China
3.State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
4.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
5.State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.
Rongrong SUN, Meiyi YAO, Xiaodong LIN, Wenhuai ZHANG, Yunlong QIU, Lijuan HU, Yaoping XIE, Jian YANG, Jianxin DONG, Guoguang CHENG. Effect of Ti on the Corrosion Behavior of Fe22Cr5Al3Mo Alloy in 500oC Superheated Steam[J]. Acta Metall Sin, 2022, 58(5): 610-622.

全文: PDF(5670 KB)   HTML
摘要: 

利用真空非自耗电弧炉熔炼了3种Fe22Cr5Al3Mo-xTi (x = 0、0.5、1.0,质量分数,%)合金,在静态高压釜中进行500℃、10.3 MPa过热蒸汽的腐蚀实验。采用XRD、OM、FIB/SEM、EDS和TEM观察分析腐蚀前后样品的显微组织、晶体结构和成分。结果表明,3种合金腐蚀不同时间形成的氧化膜均发生了分层现象,氧化膜外层均为Fe2O3,中间层均为hcp-Cr2O3,内层均为Al2O3;在靠近氧化膜和合金界面处的Al2O3膜中存在α-(Fe, Cr)。0Ti、0.5Ti和1.0Ti合金的Cr氧化膜厚度与氧化膜总厚度的比值(R)遵循R0.5Ti > R1.0Ti > R0Ti,这说明与0Ti和1.0Ti相比0.5Ti合金的耐腐蚀性能最优。添加Ti可抑制合金中Cr23C6第二相的析出,降低合金的氧化膜总厚度,提高保护性hcp-Cr2O3膜的厚度,从而提高合金的耐腐蚀性能。

关键词 FeCrAl合金Ti腐蚀氧化膜显微组织    
Abstract

Zirconium alloys can react with water to produce hydrogen under a loss of coolant accident, which can lead to a hydrogen explosion. Therefore, the idea of developing accident tolerant fuel (ATF) is proposed, which involves nuclear fuel and cladding. FeCrAl alloy is a promising candidate material for ATF cladding. Studying the effects of alloying elements on the corrosion behavior and mechanism of FeCrAl alloy can provide a theoretical basis and guidance for optimizing its composition. Therefore, in this study, the effect of Ti on the corrosion behavior of Fe22Cr5Al3Mo alloy in 500oC superheated steam was investigated. Three types of Fe22Cr5Al3Mo-xTi (x = 0, 0.5, 1.0, mass fraction, %) alloys, designated as 0Ti, 0.5Ti, and 1.0Ti alloys, respectively, were fabricated and corroded in 500oC and 10.3 MPa superheated steam using a static autoclave. The microstructure, crystal structure and composition of the samples before and after corrosion were observed using XRD, OM, FIB/SEM, EDS, and TEM. The results show that the oxide films formed on the Fe22Cr5Al3Mo-xTi alloys in 500oC and 10.3 MPa superheated steam present a trilayer structure consisting of an outer oxide layer of Fe2O3, a middle layer of hcp-Cr2O3, and an inner layer of Al2O3. There is α-(Fe, Cr) in the Al2O3 layer near the oxide/metal interface. The ratio, R, of Cr oxide film thickness to total oxide film thickness for 0Ti, 0.5Ti, and 1.0Ti alloys follows the order R0.5Ti > R1.0Ti > R0Ti, which may explain the better corrosion resistance of 0.5Ti alloy than 1.0Ti and 0Ti alloys. The addition of Ti can reduce the total thickness of the oxide films and improve the corrosion resistance of the alloys by increasing the thickness of the protective hcp-Cr2O3 film and inhibiting the precipitation of Cr23C6.

Key wordsFeCrAl alloy    Ti    corrosion    oxide film    microstructure
收稿日期: 2021-05-12     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(51871141)
作者简介: 姚美意, yaomeiyi@shu.edu.cn,主要从事核燃料包壳材料锆合金和容错燃料(ATF)包壳材料的研究林晓冬, xdlin@shu.edu.cn,主要从事核电关键结构材料的辐照损伤和腐蚀行为研究
孙蓉蓉,女,1993年生,博士
AlloyCrAlMoTiCNFe
0Ti22.905.253.64-0.00580.0089Bal.
0.5Ti21.345.043.140.450.00640.0043Bal.
1.0Ti21.994.593.440.980.00760.0045Bal.
表1  实验用合金的成分 (mass fraction / %)
图1  0Ti、0.5Ti和1.0Ti合金的OM像
图2  0Ti、0.5Ti和1.0Ti合金的XRD谱
AlloyCrystal plane index (hkl)a¯ / nm
(110)(200)(211)
2θ / (°)d / nm2θ / (°)d / nm2θ / (°)d / nm
α-Fe44.670.2026865.020.1433282.330.117020.28664
0Ti44.150.2049564.240.1448781.450.118070.28960
0.5Ti44.180.2048264.240.1448781.420.118100.28956
1.0Ti44.280.2043964.360.1446381.420.118100.28920
表2  α-Fe、0Ti、0.5Ti和1.0Ti合金的XRD特征峰参数(衍射半角θ、晶面间距d)和晶格常数平均值(a¯)
图3  0Ti、0.5Ti和1.0Ti合金中典型第二相粒子的TEM像和SAED花样
Alloyfcc-Cr23C6o-Cr3C2o-Fe3Chcp-Fe2Tic-(Fe, Cr)mc-Al8Mo3fcc-TiN
0Ti100-200100300----
0.5Ti-100-20080100-150150150350
1.0Ti-70-12050-100-120250-400240
表3  0Ti、0.5Ti和1.0Ti合金中典型第二相的尺寸统计 (nm)
图4  0.5Ti和1.0Ti合金500℃、10.3 MPa过热蒸汽中腐蚀1000 h时基体中TiN第二相的EDS面扫描图
图5  0Ti、0.5Ti和1.0Ti合金在500℃、10.3 MPa过热蒸汽中腐蚀3、500和1000 h的氧化膜表面显微组织SEM像
图6  0Ti、0.5Ti和1.0Ti合金在500℃、10.3 MPa过热蒸汽中腐蚀3、500和1000 h的氧化膜截面HAADF像
Alloy3 h500 h1000 h
0Ti250 ± 100600 ± 30720 ± 50
0.5Ti60 ± 25180 ± 85330 ± 80
1.0Ti60 ± 20230 ± 65370 ± 50
表4  0Ti、0.5Ti和1.0Ti合金在500℃、10.3 MPa过热蒸汽中腐蚀3、500和1000 h时氧化膜的厚度 (nm)
图7  0.5Ti合金在500℃、10.3 MPa过热蒸汽中腐蚀1000 h时氧化膜截面的HAADF像和EDS面扫描图
图8  0Ti、0.5Ti和1.0Ti合金在500℃、10.3 MPa过热蒸汽中腐蚀500和1000 h的氧化膜截面不同区域的TEM像及SAED花样
AlloyOxide position3 h500 h1000 h
0TiOhcp-Fe2O3hcp-Fe2O3hcp-Fe2O3
M--hcp-Cr2O3
I-m-Al2O3-
0.5TiOhcp-Fe2O3hcp-Fe2O3hcp-Fe2O3
Mhcp-Cr2O3hcp-Cr2O3hcp-Cr2O3
Ihcp-Al2O3o-Al2O3o-Al2O3
1.0TiO--hcp-Fe2O3
Mhcp-Cr2O3hcp-Cr2O3hcp-Cr2O3
I-hcp-Al2O3hcp-Al2O3
表5  0Ti、0.5Ti和1.0Ti合金在500℃、10.3 MPa过热蒸汽中腐蚀3、500和1000 h时的氧化膜晶体结构
图9  FeCrAl合金在500℃过热蒸汽中的腐蚀过程示意图
AlloyIron oxideChromium oxideAluminum oxideOverlap area
0Ti2204080260
0.5Ti60653223
1.0Ti80656025
表6  0Ti、0.5Ti和1.0Ti合金在500℃、10.3 MPa过热蒸汽中腐蚀500 h时铁氧化物膜、铬氧化物膜、铝氧化物膜以及Cr和Al的混合氧化物区的厚度 (nm)
Time / h0Ti0.5Ti1.0Ti
3~00.1330.083
5000.0670.3610.283
10000.090.3480.176
表7  0Ti、0.5Ti和1.0Ti合金在500℃、10.3 MPa过热蒸汽中腐蚀3、500和1000 h时Cr氧化物膜厚度/氧化膜总厚度的比值
1 Zinkle S J, Terrani K A, Gehin J C, et al. Accident tolerant fuels for LWRs: A perspective [J]. J. Nucl. Mater., 2014, 448: 374
doi: 10.1016/j.jnucmat.2013.12.005
2 Little E A, Stow D A. Void-swelling in irons and ferritic steels: II. An experimental survey of materials irradiated in a fast reactor [J]. J. Nucl. Mater., 1979, 87: 25
doi: 10.1016/0022-3115(79)90123-5
3 Lim J, Hwang I S, Kim J H. Design of alumina forming FeCrAl steels for lead or lead-bismuth cooled fast reactors [J]. J. Nucl. Mater., 2013, 441: 650
doi: 10.1016/j.jnucmat.2012.04.006
4 Pint B A, Terrani K A, Yamamoto Y, et al. Material selection for accident tolerant fuel cladding [J]. Metall. Mater. Trans., 2015, 2: 190
5 Lim J, Nam H O, Hwang I S, et al. A study of early corrosion behaviors of FeCrAl alloys in liquid lead-bismuth eutectic environments [J]. J. Nucl. Mater., 2010, 407: 205
doi: 10.1016/j.jnucmat.2010.10.018
6 Engkvist J, Bexell U, Grehk M, et al. High temperature oxidation of FeCrAl-alloys-influence of Al-concentration on oxide layer characteristics [J]. Mater. Corros., 2009, 60: 876
7 Pint B A, Unocic K A, Terrani K A. Effect of steam on high temperature oxidation behaviour of alumina-forming alloys [J]. Mater. High Temp., 2015, 32: 28
doi: 10.1179/0960340914Z.00000000058
8 Kögler R, Anwand W, Richter A, et al. Nanocavity formation and hardness increase by dual ion beam irradiation of oxide dispersion strengthened FeCrAl alloy [J]. J. Nucl. Mater., 2012, 427: 133
doi: 10.1016/j.jnucmat.2012.04.029
9 Sun Z Q, Bei H B, Yamamoto Y. Microstructural control of FeCrAl alloys using Mo and Nb additions [J]. Mater. Charact., 2017, 132: 126
doi: 10.1016/j.matchar.2017.08.008
10 Dolley E J, Schuster M, Crawford C, et al. Mechanical behavior of FeCrAl and other alloys following exposure to LOCA conditions plus quenching [A]. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Switzerland: Springer International Publishing, 2018: 185
11 Park D J, Kim H G, Park J Y, et al. A study of the oxidation of FeCrAl alloy in pressurized water and high-temperature steam environment [J]. Corros. Sci., 2015, 94: 459
doi: 10.1016/j.corsci.2015.02.027
12 Badini C, Laurella F. Oxidation of FeCrAl alloy: Influence of temperature and atmosphere on scale growth rate and mechanism [J]. Surf. Coat. Technol., 2001, 135: 291
doi: 10.1016/S0257-8972(00)00989-0
13 Rebak R B. Versatile oxide films protect FeCrAl alloys under normal operation and accident conditions in light water power reactors [J]. JOM, 2018, 70: 176
doi: 10.1007/s11837-017-2705-z
14 Chu R. Studies on high-temperature oxidation and its influence mechanism of Fe-Cr-Al alloy [D]. Shenyang: Shenyang Normal University, 2013
14 褚 冉. Fe-Cr-Al合金高温氧化及影响机理研究 [D]. 沈阳: 沈阳师范大学, 2013
15 Herbelin J M, Mantel M, Cogne J Y. Future trends of FeCrAl alloys for automative catalytic converters to reach mass production [Z]. Germany: Werkstoff-Informationsgesellschaft mbH, Frankfurt am Main, 1997: 79
16 Ning F Q, Wang X, Yang Y, et al. Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water [J]. J. Mater. Sci. Technol., 2021, 70: 136
doi: 10.1016/j.jmst.2020.07.026
17 Kitajima Y, Hayashi S, Ukai S, et al. The effect of additional elements on oxide scale evolution of Fe-20at.%Cr-10at.%Al alloy at 900℃ in air [J]. Mater. Sci. Forum., 2008, 595-598: 1013
doi: 10.4028/www.scientific.net/MSF.595-598.1013
18 Huang T H, Naumenko D, Song P, et al. Effect of titanium addition on alumina growth mechanism on yttria-containing FeCrAl-base alloy [J]. Oxid. Met., 2018, 90: 671
doi: 10.1007/s11085-018-9861-6
19 Schutze M. Lifetime Modelling of High Temperature Corrosion Processes EFC 34 [M]. Boca Raton, FL, USA: CRC Press, 2001: 66
20 Dang J, Zhou P, Shi H Y. Influence of Nb/Ti on corrosion resistance properties of low chromium ferritic stainless steels [J]. Iron Steel Van Tit, 2020, 41: 147
20 党 杰, 周 鹏, 史洪源. Nb、Ti对低铬铁素体不锈钢腐蚀性能的影响 [J]. 钢铁钒钛, 2020, 41: 147
21 Li X, Lu X L, Bi H Y. Effect of Nb, Ti on the properties of 15Cr ferritic stainless steel [A]. Proceedings of the 8th (2011) China Iron and Steel Annual Meeting [C]. Beijing: Metallurgical Industry Press, 2011: 535
21 李 鑫, 陆晓莉, 毕洪运. Nb、Ti对15Cr铁素体不锈钢性能的影响 [A]. 第八届(2011)中国钢铁年会论文集 [C]. 北京: 冶金工业出版社, 2011: 535
22 Zhang X, Sun Q S, Du W. Effect of Nb, Ti on structure and property of ultra-low carbon and nitrogen ferritic stainless steel [A]. Proceedings of the 4th Annual Youth Academic Conference of China Society of Metals [C]. Beijing: Iron & Steel, 2008: 138
22 张 鑫, 孙全社, 杜 伟. Nb、Ti对超低碳氮430铁素体不锈钢组织和性能的影响 [A]. 第4届中国金属学会青年学术年会论文集 [C]. 北京: 钢铁, 2008: 138
23 Yu Y N. Fundamentals of Materials Science [M]. Beijing: Higher Education Press, 2006: 781
23 余永宁. 材料科学基础 [M]. 北京: 高等教育出版社, 2006: 781
24 Qian Y, Sun R R, Zhang W H, et al. Effect of Nb on microstructure and corrosion resistance of Fe22Cr5Al3Mo alloy [J]. Acta Metall. Sin., 2020, 56: 321
24 钱 月, 孙蓉蓉, 张文怀 等. Nb对Fe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响 [J]. 金属学报, 2020, 56: 321
25 Li N, Parker S S, Wood E S, et al. Oxide morphology of a FeCrAl alloy, Kanthal APMT, following extended aging in air at 300oC to 600oC [J]. Metall. Mater. Trans., 2018, 49A: 2940
26 Li N, Parker S S, Saleh T A, et al. Intermediate temperature corrosion behaviour of Fe-12Cr-6Al-2Mo-0.2Si-0.03Y alloy (C26M) at 300-600oC [J]. Corros. Sci., 2019, 157: 274
doi: 10.1016/j.corsci.2019.05.029
27 Dai J X, Gong Z M, Xu S T, et al. In situ study on the initial oxidation behavior of zirconium alloys with near-ambient pressure XPS [J]. Acta Phys. Chim. Sin., 2020, 36: 2003026
27 戴久翔, 龚忠苗, 徐诗彤 等. 锆合金初始氧化行为的原位近常压XPS研究 [J]. 物理化学学报, 2020, 36: 2003026
28 Pan D, Zhang R Q, Wang H J, et al. In steam short-time oxidation kinetics of FeCrAl alloys [J]. J. Mater. Eng. Perform., 2018, 27: 6407
doi: 10.1007/s11665-018-3665-3
29 Zhang Z G, Niu Y, Zhang X J. Effect of third element Cr in Fe-Cr-Al alloys [J]. J. Iron Steel Res., 2007, 19: 46
29 张志刚, 牛 焱, 张学军. 铁-铬-铝合金中铬的第三组元作用 [J]. 钢铁研究学报, 2007, 19: 46
30 Terrani K A, Pint B A, Kim Y J, et al. Uniform corrosion of FeCrAl alloys in LWR coolant environments [J]. J. Nucl. Mater., 2016, 479: 36
doi: 10.1016/j.jnucmat.2016.06.047
31 Pint B A, Terrani K A, Rebak R B. Steam oxidation behavior of FeCrAl cladding [A]. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Switzerland: Springer International Publishing, 2018: 235
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[4] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[5] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[6] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[7] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[8] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[9] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[10] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[14] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.