Please wait a minute...
金属学报  2010, Vol. 46 Issue (5): 581-588    DOI: 10.3724/SP.J.1037.2009.00723
  论文 本期目录 | 过刊浏览 |
固溶处理后冷轧变形7050铝合金时效工艺研究
王东; 马宗义
中国科学院金属研究所沈阳材料科学国家(联合)实验室; 沈阳 110016
INVESTIGATION OF POST-COLD ROLLING AGING PROCESSES ON SOLUTIONIZED 7050 ALUMINUM ALLOY
WANG Dong; MA Zongyi
Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

王东 马宗义. 固溶处理后冷轧变形7050铝合金时效工艺研究[J]. 金属学报, 2010, 46(5): 581-588.
, . INVESTIGATION OF POST-COLD ROLLING AGING PROCESSES ON SOLUTIONIZED 7050 ALUMINUM ALLOY[J]. Acta Metall Sin, 2010, 46(5): 581-588.

全文: PDF(849 KB)  
摘要: 

7050铝合金固溶处理后经67%冷变形, 在120 ℃一级时效时, 冷轧引入的大量位错增加了样品强度, 时效4 h样品的强度比T6状态样品提高12.6%. 随时效时间增加, 位错导致的不均匀形核的析出相粗化, 样品的拉伸强度逐渐降低. 但时效32 h样品的强度仍高于T6状态样品. 冷轧后时效样品的晶界析出相与T6状态相比分布较为分散, 并且随时效时间的增加逐渐粗化. 120 ℃时效4 h的样品, 经165 ℃二级时效处理, 随时效时间的增加, 样品中残留位错大量湮灭, 晶内、晶界析出相尺寸均逐渐增大, 导致样品的强度逐渐降低, 而延伸率逐渐升高, 165 ℃时效6 h样品的强度与T76样品相似. 在135-180 ℃二级时效1 h的样品中的位错密度随温度的升高而减小, 同时晶内、晶界析出相尺寸随温度的升高而增大, 导致样品强度逐渐下降.

关键词 7050铝合金冷轧 时效工艺力学性能显微组织    
Abstract

7050 aluminum alloy samples were subjected to 67% cold rolling (CR) deformation after solution treatment, and then were aged at 120℃. The dislocations introduced by the CR increased the strength of the samples. The strength of the sample aged at 120℃ for 4 h (CR4) increased by 12.6% compared to that of T6 sample. The strength of the 7050 samples decreased with increasing the aging time due to the coarsening of heterogeneously--nucleated precipitates. However, the strength of the sample aged at 120 ℃ for 32 h is still higher than that of the T6 sample. Furthermore, the size and particle interval of the grain boundary precipitates increased as the aging time increased. The CR4 sample was aged at 165℃ for different times. The strength of the samples decreased with increasing the aging time due to the annihilation of dislocations and the growth of the precipitates. The strength of the sample aged at 165 ℃ for 6 h is similar to that of T76 sample. In the CR4 sample aged at 135-180℃ for 1 h, the number of dislocations reduced and the size of precipitates increased with increasing the temperature, which results in a decrease in the strength of the samples.

Key words7050 aluminum alloy    cold rolling    aging process    mechanical property    microstructure
收稿日期: 2009-11-02     
基金资助:

国家重点基础研究发展规划资助项目2005CB623708

作者简介: 王东, 男, 1980年生, 助理研究员, 硕士

[1] Hatch J E. Aluminum Properties and Physical Metallurgy, Metals Park, Ohio: American Society for Metals, 1984: 1
[2] Wagner J A, Shenoy R N. Metall Trans, 1991; 22A: 2809
[3] Dai X Y, Xia C Q, Wu A R, Wang J W, Li Y Y. Mater Rev, 2006; 20: 104
(戴晓元, 夏长清, 吴安如, 王杰文, 李杨勇. 材料导报, 2006; 20: 104)

[4] Starink M J, Wang S C. Acta Mater, 2003; 51: 5131
[5] Dumont D, Deschamps A, Brechet Y. Mater Sci Eng, 2003; A356: 326
[6] Kamp N, Sinclair I, Starink M J. Metall Mater Trans, 2002; 33A: 1125
[7] Dixit M, Mishra R S, Sankaran K K. Mater Sci Eng, 2008; A478: 163
[8] Sha G, Cerezo A. Acta Mater, 2004; 52: 4503
[9] Wang D, Ni D R, Ma Z Y. Mater Sci Eng, 2008; A494: 360
[10] Wang D, Ma Z Y. J Alloys Compd, 2009; 469: 445
[11] Deschamps A, Brechet Y, Guyot P, Livet F. Z Metallkd, 1997; 88: 601
[12] Kassim S, Rubaie A, Barroso E K L, Godefroid L B. Int J Fatigue, 2006; 28: 934
[13] Waterloo G, Hansen V, Gjonnes J, Skjervold S R. Mater Sci Eng, 2001; A303: 226
[14] Deschamps A, Livet F, Brechet Y. Acta Mater, 1999; 47: 281
[15] Lin N A, Liu Z Y, Zeng S M. Trans Nonferrous Met Soc China, 2006; 16: 1341
[16] Zhen L, Chen J Z, Yang S J, Shao W J, Dai S L. Mater Sci Eng, 2009; A504: 55
[17] Wang D, Ma Z Y, Gao Z M. Mater Chem Phys, 2009; 117: 228
[18] Hurley P J, Humphreys F J. Acta Mater, 2003; 51: 1087
[19] Ou B L, Yang J G, Wei M Y. Metall Mater Trans, 2007; 38A: 1760
[20] Nguyen D, Thompson A W, Bernstein I M. Acta Metall, 1987; 35: 2417

[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[13] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.