Please wait a minute...
金属学报  2022, Vol. 58 Issue (2): 250-256    DOI: 10.11900/0412.1961.2020.00527
  研究论文 本期目录 | 过刊浏览 |
Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究
李海勇1, 李赛毅1,2()
1.中南大学 材料科学与工程学院 长沙 410083
2.中南大学 有色金属材料科学与工程教育部重点实验室 长沙 410012
Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations
LI Haiyong1, LI Saiyi1,2()
1.School of Materials Science and Engineering, Central South University, Changsha 410083, China
2.Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410012, China
引用本文:

李海勇, 李赛毅. 纯Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
Haiyong LI, Saiyi LI. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. Acta Metall Sin, 2022, 58(2): 250-256.

全文: PDF(2069 KB)   HTML
摘要: 

选取具有不同取向差角的纯Al <111>对称倾斜晶界,采用合成驱动力法模拟晶界在300~800 K温度下的迁移行为,研究温度对迁移行为的影响。结果表明,晶界迁移行为的温度相关性随取向差角而变化,可以归为3类:取向差角为8.61°~21.79°的晶界呈现明显反热激活迁移,38.21°~60°晶界总体上表现为热激活迁移,27.80°~32.20°晶界在低温下为热激活迁移,在较高温度下转变为反热激活迁移。8.61°~21.79°晶界的迁移率总体上远高于其他晶界,但差异随温度升高而减小。结构单元模型能够准确体现不同晶界在各个温度下的结构特点,且结构单元类型相同的晶界表现出相似的迁移行为温度相关性。不同温度区间内同一晶界的迁移行为温度相关性变化可能与结构单元多个变体之间的转变有关。

关键词 晶界迁移率温度相关性分子动力学    
Abstract

The migration behavior of <111> symmetric tilt grain boundaries (GBs) having different misorientation angles was simulated using a molecular dynamics synthetic driving force method. The effect of temperature on the migration behavior was investigated in the temperature range of 300-800 K. The results demonstrated that the temperature dependencies of GB migration varied with the misorientation. GBs with a misorientation of 8.61°-21.79° exhibited antithermally activated migration, whereas those with a misorientation of 38.21°-60° exhibited thermally activated migration. For the GBs having a misorientation of 27.80°-32.20°, there was an apparent transition from thermally activated migration at low temperature to antithermally activated migration at high temperature. The mobility of the GBs having a misorientation of 8.61°-21.79° was much higher than that of other GBs, but the differences between them decreased with increasing temperature. The GB structures at different temperatures can be well described using the structural unit model. GBs with structures consisting of similar types of structural units exhibit comparable temperature dependencies in their mobility. The complex temperature dependencies of migration behavior shown by some GBs appear to be related to structural changes featured by the transformation between variants belonging to the same type of structural units.

Key wordsgrain boundary    mobility    temperature dependency    molecular dynamics
收稿日期: 2020-12-28     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51271204);中南大学高性能计算公共平台项目
作者简介: 李海勇,男,1994年生,硕士生
θ / (°)Grain boundary planeStructural unit description
8.61(11 12¯ 1)1/(12 11¯1¯)2133|9(A)B1.9(A)B1.9(A)B1|
10.42(9 10¯ 1)1/(10 9¯1¯)291|7(A)B2.7(A)B2.7(A)B2|
13.17(7 8¯ 1)1/(8 7¯1¯)257|5(A)B1|
17.90(5 6¯ 1)1/(6 5¯1¯)231|AAAB1.AAAB1.AAAB1|
21.79(4 5¯ 1)1/(5 4¯1¯)221|AAB2|
27.80(3 4¯ 1)1/(4 3¯1¯)213|AB2.AB2.AB2|
32.20(5 7¯ 2)1/(7 5¯2¯)239|AB2B2|
38.21(2 3¯ 1)1/(3 2¯1¯)27|B2.B2.B2|
43.57(5 8¯ 3)1/(8 5¯3¯)249|B2B2C.B2B2C.B2B2C|
46.83(3 5¯ 2)1/(5 3¯2¯)219|B2C.B2C.B2C|
50.57(4 7¯ 3)1/(7 4¯3¯)237|B2CC.B2CC.B2CC|
53.99(6 11¯ 5)1/(11 6¯5¯)291|B24(C).B24(C).B24(C)|
60.00(1 2¯ 1)1/(2 1¯1¯)23|C|
表1  Al <111>对称倾斜晶界的晶体学信息和结构单元表征
图1  用于计算晶界迁移率的双晶模型示意图
图2  部分晶界在不同温度下迁移的位移(d)-时间(t)曲线
图3  部分晶界在不同温度下迁移速率随驱动力的变化(a) θ = 13.17° (b) θ = 46.83°
图4  具有不同取向差角的<111>对称倾斜晶界的迁移率随温度变化曲线
图5  不同取向差角的晶界在0 K下的结构沿<111>轴的投影(上、下排图分别按照原子所属层数及中心对称因子着色)(a) θ = 13.17° (b) θ = 21.79° (c) θ = 38.21° (d) θ = 46.83° (e) θ = 60°
图6  13.17°晶界在不同温度下的结构沿<111>轴的投影(原子基于中心对称因子着色)(a) 400 K (b) 600 K (c) 800 K
图7  27.80°晶界在600 K、驱动力p = 0.0125 eV/atom下迁移过程中不同时刻的结构(投影方向为<111>,原子基于中心对称因子着色)(a) t = 0 ps (b) t = 2.3 ps
1 Gottstein G , Shvindlerman L S . Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications [M]. 2nd Ed., Boca Raton: Taylor & Francis, 2010: 145
2 Winning M , Gottstein G , Shvindlerman L S . Stress induced grain boundary motion [J]. Acta Mater., 2001, 49: 211
3 Winning M , Rollett A D , Gottstein G , et al . Mobility of low-angle grain boundaries in pure metals [J]. Philos. Mag., 2010, 90: 3107
4 Shivindlerman L S , Gottstein G , Molodov D A . Grain boundary motion in pure metals: Effect of interaction between adsorbed atoms at moving boundaries [J]. Phys. Status Solidi, 1997, 160a: 419
5 Molodov D A , Czubayko U , Gottstein G , et al . Mobility of <111> tilt grain boundaries in the vicinity of the special misorientation = 7 in bicrystals of pure aluminium [J]. Scr. Metall. Mater., 1995, 32: 529
6 Upmanyu M , Srolovitz D J , Shvindlerman L S , et al . Misorientation dependence of intrinsic grain boundary mobility: Simulation and experiment [J]. Acta Mater., 1999, 47: 3901
7 Kopetsky C V , Shvindlerman L S , Sursaeva V G . Effect of athermal motion of grain boundaries [J]. Scr. Metall., 1978, 12: 953
8 Rheinheimer W , Hoffmann M J . Non-Arrhenius behavior of grain growth in strontium titanate: New evidence for a structural transition of grain boundaries [J]. Scr. Mater., 2015, 101: 68
9 Homer E R , Holm E A , Foiles S M , et al . Trends in grain boundary mobility: Survey of motion mechanisms [J]. JOM, 2014, 66: 114
10 Priedeman J L , Olmsted D L , Homer E R . The role of crystallography and the mechanisms associated with migration of incoherent twin grain boundaries [J]. Acta Mater., 2017, 131: 553
11 Humberson J , Holm E A . Anti-thermal mobility in the Σ3 [111] 60° {11 8 5} grain boundary in nickel: Mechanism and computational considerations [J]. Scr. Mater., 2017, 130: 1
12 Bair J L , Homer E R . Antithermal mobility in 7 and 9 grain boundaries caused by stick-slip stagnation of ordered atomic motions about coincidence site lattice atoms [J]. Acta Mater., 2019, 162: 10
13 Yu T T , Yang S , Deng C . Survey of grain boundary migration and thermal behavior in Ni at low homologous temperatures [J]. Acta Mater., 2019, 177: 151
14 Han J , Thomas S L , Srolovitz D J . Grain-boundary kinetics: A unified approach [J]. Prog. Mater. Sci., 2018, 98: 386
15 Homer E R , Patala S , Priedeman J L . Grain boundary plane orientation fundamental zones and structure-property relationships [J]. Sci. Rep., 2015, 5: 15476.
16 Olmsted D L , Holm E A , Foiles S M . Survey of computed grain boundary properties in face-centered cubic metals—II: Grain boundary mobility [J]. Acta Mater., 2009, 57: 3704
17 Yang L , Lai C M , Li S Y . A survey of the crystallography-dependency of twist grain boundary mobility in Al based on atomistic simulations [J]. Mater. Lett., 2020, 263: 127293.
18 Yang L , Lai C M , Li S Y . Statistical analysis of grain boundary mobility in Al simulated using a modified synthetic driving force molecular dynamics method [J]. Mater. Lett., 2018, 227: 90
19 Beck P A , Sperry P R , Hu H . The orientation dependence of the rate of grain boundary migration [J]. J. Appl. Phys., 1950, 21: 420
20 Lücke K , Rixen R , Senna M . Formation of recrystallization textures in rolled aluminum single crystals [J]. Acta Metall., 1976, 24: 103
21 Plimpton S . Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
22 Liu X Y , Ercolessi F , Adams J B . Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy [J]. Modell. Simul. Mater. Sci. Eng., 2004, 12: 665
23 Adlakha I , Solanki K N . Structural stability and energetics of grain boundary triple junctions in face centered cubic materials [J]. Sci. Rep., 2015, 5: 8692
24 Men H , Fan Z . Molecular dynamic simulation of the atomic structure of aluminum solid-liquid interfaces [J]. Mater. Res. Express, 2014, 1: 025705
25 Tschopp M A , McDowell D L . Structures and energies of Σ3 asymmetric tilt grain boundaries in copper and aluminium [J]. Philos. Mag., 2007, 87: 3147
26 Janssens K G F , Olmsted D , Holm E A , et al . Computing the mobility of grain boundaries [J]. Nat. Mater., 2006, 5: 124
27 Yang L , Li S Y . A modified synthetic driving force method for molecular dynamics simulation of grain boundary migration [J]. Acta Mater., 2015, 100: 107
28 Stukowski A . Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool [J]. Modell. Simul. Mater. Sci. Eng., 2009, 18: 015012
29 Sutton A P , Vitek V . On the structure of tilt grain boundaries in cubic metals I. Symmetrical tilt boundaries [J]. Philos. Trans. R. Soc. London, 1983, 309A: 1
30 Zhou J , Mohles V . Towards realistic molecular dynamics simulations of grain boundary mobility [J]. Acta Mater., 2011, 59: 5997
31 Holm E A , Foiles S M , Homer E R , et al . Comment on “Toward realistic molecular dynamics simulations of grain boundary mobility” by Zhou and Mohles [J]. Scr. Mater., 2012, 66: 714
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[4] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[5] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[6] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[7] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[8] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[9] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[10] 刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.
[11] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[12] 赵立东, 王思宁, 肖钰. 热电材料的载流子迁移率优化[J]. 金属学报, 2021, 57(9): 1171-1183.
[13] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[14] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[15] 孙佳, 李学雄, 张金虎, 王刚, 杨梅, 王皞, 徐东生. Ti-6Al-4V合金βα相变中晶界α相形成机制的相场模拟[J]. 金属学报, 2020, 56(8): 1113-1122.