|
|
界面热力学与晶界相图的研究进展 |
胡标1, 张华清2, 张金1, 杨明军2, 杜勇2( ), 赵冬冬3 |
1.安徽理工大学 材料科学与工程学院 淮南 232001 2.中南大学 粉末冶金国家重点实验室 长沙 410083 3.天津大学 材料科学与工程学院 天津 300350 |
|
Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram |
HU Biao1, ZHANG Huaqing2, ZHANG Jin1, YANG Mingjun2, DU Yong2( ), ZHAO Dongdong3 |
1.School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China 2.State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China 3.School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China |
引用本文:
胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
Biao HU,
Huaqing ZHANG,
Jin ZHANG,
Mingjun YANG,
Yong DU,
Dongdong ZHAO.
Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram[J]. Acta Metall Sin, 2021, 57(9): 1199-1214.
1 |
Dash J G. Surface melting [J]. Contemp. Phys., 1989, 30: 89
|
2 |
Dash J G, Fu H Y, Wettlaufer J S. The premelting of ice and its environmental consequences [J]. Rep. Prog. Phys., 1995, 58: 115
|
3 |
Dash J G, Rempel A W, Wettlaufer J S. The physics of premelted ice and its geophysical consequences [J]. Rev. Mod. Phys., 2006, 78: 695
|
4 |
Hsieh T E, Balluffi R W. Experimental study of grain boundary melting in aluminum [J]. Acta Metall., 1989, 37: 1637
|
5 |
Chang L S, Rabkin E, Straumal B, et al. Temperature dependence of the grain boundary segregation of Bi in Cu polycrystals [J]. Scr. Mater., 1997, 37: 729
|
6 |
Divinski S, Lohmann M, Herzig C. Grain-boundary melting phase transition in the Cu-Bi system [J]. Phys. Rev., 2005, 71B: 104104
|
7 |
Straumal B, Baretzky B. Grain boundary phase transitions and their influence on properties of polycrystals [J]. Interface Sci., 2004, 12: 147
|
8 |
Noskovich O I, Rabkin E I, Semenov V N, et al. Wetting and premelting phase transitions in 38°[100] tilt grain boundary in (Fe-12 at.%Si)-Zn alloy in the vicinity of the A2-B2 bulk ordering in Fe-12 at.% Si alloy [J]. Acta Metall. Mater., 1991, 39: 3091
|
9 |
Rabkin E I, Semenov V N, Shvindlerman L S, et al. Penetration of tin and zinc along tilt grain boundaries 43°[100] in Fe-5 at.% Si alloy: Premelting phase transition? [J]. Acta Metall. Mater., 1991, 39: 627
|
10 |
Luo J, Gupta V K, Yoon D H. Segregation-induced grain boundary premelting in nickel-doped tungsten [J]. Appl. Phys. Lett., 2005, 87: 231902
|
11 |
Gupta V K, Yoon D H, Meyer III H M, et al. Thin intergranular films and solid-state activated sintering in nickel-doped tungsten [J]. Acta Mater., 2007, 55: 3131
|
12 |
Shi X M, Luo J. Grain boundary wetting and prewetting in Ni-doped Mo [J]. Appl. Phys. Lett., 2009, 94: 251908
|
13 |
Shi X M, Luo J. Developing grain boundary diagrams as a materials science tool: A case study of nickel-doped molybdenum [J]. Phys. Rev., 2011, 84B: 014105
|
14 |
Jung J I, Zhou N X, Luo J. Effects of sintering aids on the densification of Mo-Si-B alloys [J]. J. Mater. Sci., 2012, 47: 8308
|
15 |
Wang H F, Chiang Y M. Thermodynamic stability of intergranular amorphous films in bismuth‐doped zinc oxide [J]. J. Am. Ceram. Soc., 1998, 81: 89
|
16 |
Luo J, Wang H F, Chiang Y M. Origin of solid-state activated sintering in Bi2O3-doped ZnO [J]. J. Am. Ceram. Soc., 1999, 82: 916
|
17 |
MacLaren I, Cannon R M, Gülgün M A, et al. Abnormal grain growth in alumina: Synergistic effects of yttria and silica [J]. J. Am. Ceram. Soc., 2003, 86: 650
|
18 |
Luo J. Stabilization of nanoscale quasi-liquid interfacial films in inorganic materials: A review and critical assessment [J]. Crit. Rev. Solid State Mater. Sci., 2007, 32: 67
|
19 |
Tang M, Carter W C, Cannon R M. Diffuse interface model for structural transitions of grain boundaries [J]. Phys. Rev., 2006, 73B: 024102
|
20 |
Sutton A P, Balluffi R W. Interfaces in Crystalline Materials [M]. Oxford: Oxford University Press, 1995: 414
|
21 |
Lejček P, Hofmann S. Thermodynamics and structural aspects of grain boundary segregation [J]. Crit. Rev. Solid State Mater. Sci., 1995, 20: 1
|
22 |
Harmer M P. The phase behavior of interfaces [J]. Science, 2011, 332: 182
|
23 |
Hart E W. Two-dimensional phase transformation in grain boundaries [J]. Scr. Metall., 1968, 2: 179
|
24 |
Rottman C. Theory of phase transitions at internal interfaces [J]. J. Phys. Colloques, 1988, 49: C5-313
|
25 |
Dillon S J, Harmer M P. Multiple grain boundary transitions in ceramics: A case study of alumina [J]. Acta Mater., 2007, 55: 5247
|
26 |
Dillon S J, Tang M, Carter W C, et al. Complexion: A new concept for kinetic engineering in materials science [J]. Acta Mater., 2007, 55: 6208
|
27 |
Luo J, Cheng H K, Asl K M, et al. The role of a bilayer interfacial phase on liquid metal embrittlement [J]. Science, 2011, 333: 1730
|
28 |
Meiners T, Frolov T, Rudd R E, et al. Observations of grain-boundary phase transformations in an elemental metal [J]. Nature, 2020, 579: 375
|
29 |
Liu X W, Song X Y, Wang H B, et al. Complexions in WC-Co cemented carbides [J]. Acta Mater., 2018, 149: 164
|
30 |
Song X Y, Zhang J X, Li L M, et al. Correlation of thermodynamics and grain growth kinetics in nanocrystalline metals [J]. Acta Mater., 2006, 54: 5541
|
31 |
Wynblatt P, Chatain D. Solid-state wetting transitions at grain boundaries [J]. Mater. Sci. Eng., 2008, A495: 119
|
32 |
Mishin Y, Boettinger W J, Warren J A, et al. Thermodynamics of grain boundary premelting in alloys. I. Phase-field modeling [J]. Acta Mater., 2009, 57: 3771
|
33 |
Luo J. Liquid-like interface complexion: from activated sintering to grain boundary diagrams [J]. Curr. Opin. Solid State Mater. Sci., 2008, 12: 81
|
34 |
Zhou N X, Yu Z Y, Zhang Y Y, et al. Calculation and validation of a grain boundary complexion diagram for Bi-doped Ni [J]. Scr. Mater., 2017, 130: 165
|
35 |
Zhou N X, Luo J. Developing grain boundary diagrams for multicomponent alloys [J]. Acta Mater., 2015, 91: 202
|
36 |
Wang L, Kamachali R D. Density-based grain boundary phase diagrams: Application to Fe-Mn-Cr, Fe-Mn-Ni, Fe-Mn-Co, Fe-Cr-Ni and Fe-Cr-Co alloy systems [J]. Acta Mater., 2021, 207: 116668
|
37 |
Cantwell P R, Tang M, Dillon S J, et al. Grain boundary complexions [J]. Acta Mater., 2014, 62: 1
|
38 |
Duscher G, Chisholm M F, Alber U, et al. Bismuth-induced embrittlement of copper grain boundaries [J]. Nat. Mater., 2004, 3: 621
|
39 |
Sigle W, Richter G, Rühle M. Insight into the atomic-scale mechanism of liquid metal embrittlement [J]. Appl. Phys. Lett., 2006, 89: 121911
|
40 |
Khalajhedayati A, Pan Z L, Rupert T J. Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility [J]. Nat. Commun., 2016, 7: 10802: 1
|
41 |
Kundu A, Asl K M, Luo J, et al. Identification of a bilayer grain boundary complexion in Bi-doped Cu [J]. Scr. Mater., 2013, 68: 146
|
42 |
Zhao H, De Geuser F, Kwiatkowski da Silva A, et al. Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2018, 156: 318
|
43 |
Jia H L, Bjørge R, Cao L F, et al. Quantifying the grain boundary segregation strengthening induced by post-ECAP aging in an Al-5Cu alloy [J]. Acta Mater., 2018, 155: 199
|
44 |
Kwiatkowski da Silva A, Ponge D, Peng Z, et al. Phase nucleation through confined spinodal fluctuations at crystal defects evidenced in Fe-Mn alloys [J]. Nat. Commun., 2018, 9: 1137
|
45 |
Herring C. Some theorems on the free energies of crystal surfaces [J]. Phys. Rev., 1951, 82: 87
|
46 |
Ference T G, Balluffi R W. Observation of a reversible grain boundary faceting transition induced by changes of composition [J]. Scr. Matall., 1988, 22: 1929
|
47 |
Park C W, Yoon D Y, Blendell J E, et al. Singular grain boundaries in alumina and their roughening transition [J]. J. Am. Ceram. Soc., 2003, 86: 603
|
48 |
Yoon D Y, Cho Y K. Roughening transition of grain boundaries in metals and oxides [J]. J. Mater. Sci., 2005, 40: 861
|
49 |
Olmsted D L, Foiles S M, Holm E A. Grain boundary interface roughening transition and its effect on grain boundary mobility for non-faceting boundaries [J]. Scr. Mater., 2007, 57: 1161
|
50 |
Olmsted D L, Holm E A, Foiles S M. Survey of computed grain boundary properties in face-centered cubic metals—II: Grain boundary mobility [J]. Acta Mater., 2009, 57: 3704
|
51 |
Holm E A, Foiles S M. How grain growth stops: A mechanism for grain-growth stagnation in pure materials [J]. Science, 2010, 328: 1138
|
52 |
Cahn J W. Transitions and phase equilibria among grain boundary structures [J]. J. Phys. Colloques, 1982, 43: C6-199
|
53 |
Frolov T, Zhu Q, Oppelstrup T, et al. Structures and transitions in bcc tungsten grain boundaries and their role in the absorption of point defects [J]. Acta Mater., 2018, 159: 123
|
54 |
Zhu Q, Samanta A, Li B X, et al. Predicting phase behavior of grain boundaries with evolutionary search and machine learning [J]. Nat. Commun., 2018, 9: 467
|
55 |
Medlin D L, Hattar K, Zimmerman J A, et al. Defect character at grain boundary facet junctions: Analysis of an asymmetric Σ = 5 grain boundary in Fe [J]. Acta Mater., 2017, 124: 383
|
56 |
Aramfard M, Deng C. Mechanically enhanced grain boundary structural phase transformation in Cu [J]. Acta Mater., 2018, 146: 304
|
57 |
Frolov T, Asta M, Mishin Y. Segregation-induced phase transformations in grain boundaries [J]. Phys. Rev., 2015, 92B: 020103(R)
|
58 |
Cao F H, Chen Y, Zhao S T, et al. Grain boundary phase transformation in a CrCoNi complex concentrated alloy [J]. Acta Mater., 2021, 209: 116786
|
59 |
Cannon R M, Esposito L. High temperature colloidal behavior: Particles in liquid silicates [J]. Z. Metallkd., 1999, 90: 1002
|
60 |
Cannon R M, Rühle M, Hoffmann M J, et al. Adsorption and wetting mechanisms at ceramic grain boundaries [A]. Grain Boundary Engineering in Ceramics [C]. Westerville, OH: American Ceramic Society, 2000: 427
|
61 |
Clarke D R, Thomas G. Grain boundary phases in a hot-pressed MgO fluxed silicon nitride [J]. J. Am. Ceram. Soc., 1977, 60: 491
|
62 |
Lou L K V, Mitchell T E, Heuer A H. Impurity phases in hot-pressed Si3N4 [J]. J. Am. Ceram. Soc., 1978, 61: 392
|
63 |
Seah M P, Hondros E D. Grain boundary segregation [J]. Proc. Roy. Soc., 1973, 335A: 191
|
64 |
Pang Y, Wynblatt P. Correlation between grain-boundary segregation and grain-boundary plane orientation in Nb-doped TiO2 [J]. J. Am. Ceram. Soc., 2005, 88: 2286
|
65 |
Wynblatt P, Chatain D, Pang Y. Some aspects of the anisotropy of grain boundary segregation and wetting [J]. J. Mater. Sci., 2006, 41: 7760
|
66 |
Kelly T F, Miller M K. Atom probe tomography [J]. Rev. Sci. Instrum., 2007, 78: 031101
|
67 |
Seidman D N. Three-dimensional atom-probe tomography: Advances and applications [J]. Annu. Rev. Mater. Res., 2007, 37: 127
|
68 |
Miller M K, Forbes R G. Tutorial review: Atom probe tomography [J]. Mater. Charact., 2009, 60: 461
|
69 |
Detor A J, Miller M K, Schuh C A. Solute distribution in nanocrystalline Ni-W alloys examined through atom probe tomography [J]. Philos. Mag., 2006, 86: 4459
|
70 |
Chellali M R, Balogh Z, Schmitz G. Nano-analysis of grain boundary and triple junction transport in nanocrystalline Ni/Cu [J]. Ultramicroscopy, 2013, 132: 164
|
71 |
Sauvage X, Wilde G, Divinski S V, et al. Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena [J]. Mater. Sci. Eng., 2012, A540: 1
|
72 |
Krakauer B W, Seidman D N. Subnanometer scale study of segregation at grain boundaries in an Fe(Si) alloy [J]. Acta Mater., 1998, 46: 6145
|
73 |
Shibata N, Pennycook S J, Gosnell T R, et al. Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions [J]. Nature, 2004, 428: 730
|
74 |
Baram M, Garofalini S H, Kaplan W D. Order in nanometer thick intergranular films at Au-sapphire interfaces [J]. Acta Mater., 2011, 59: 5710
|
75 |
Hart E W, Burke J J, Weiss V. Ultrafine-Grain Metals [M]. Syracuse, NY: Syracuse University Press, 1970: 247
|
76 |
Hart E W. Grain boundary phase transformations [A]. Hu H. The Nature and Behavior of Grain Boundaries [M]. New York: Springer, 1972: 155
|
77 |
Dillon S J, Harmer M P. Relating grain boundary complexion to grain boundary kinetics II: Silica-doped alumina [J]. J. Am. Ceram. Soc., 2008, 91: 2314
|
78 |
Dillon S J, Harmer M P. Relating grain-boundary complexion to grain-boundary kinetics I: Calcia-doped alumina [J]. J. Am. Ceram. Soc., 2008, 91: 2304
|
79 |
Dillon S J, Harmer M P. Demystifying the role of sintering additives with "complexion" [J]. J. Eur. Ceram. Soc., 2008, 28: 1485
|
80 |
Dillon S J, Harmer M P, Rohrer G S. The relative energies of normally and abnormally growing grain boundaries in alumina displaying different complexions [J]. J. Am. Ceram. Soc., 2010, 93: 1796
|
81 |
Baram M, Chatain D, Kaplan W D. Nanometer-thick equilibrium films: The interface between thermodynamics and atomistics [J]. Science, 2011, 332: 206
|
82 |
Bojarski S A, Ma S L, Lenthe W, et al. Changes in the grain boundary character and energy distributions resulting from a complexion transition in Ca-doped yttria [J]. Metall. Mater. Trans., 2012, 43A: 3532
|
83 |
Rohrer G S. Grain boundary energy anisotropy: A review [J]. J. Mater. Sci., 2011, 46: 5881
|
84 |
Dillon S J, Harmer M P, Rohrer G S. Influence of interface energies on solute partitioning mechanisms in doped aluminas [J]. Acta Mater., 2010, 58: 5097
|
85 |
Saylor D M, Morawiec A, Rohrer G S. The relative free energies of grain boundaries in magnesia as a function of five macroscopic parameters [J]. Acta Mater., 2003, 51: 3675
|
86 |
Dillon S J, Rohrer G S. Characterization of the grain-boundary character and energy distributions of yttria using automated serial sectioning and EBSD in the FIB [J]. J. Am. Ceram. Soc., 2009, 92: 1580
|
87 |
Li J, Dillon S J, Rohrer G S. Relative grain boundary area and energy distributions in nickel [J]. Acta Mater., 2009, 57: 4304
|
88 |
Rohrer G S, Li J, Lee S, et al. Deriving grain boundary character distributions and relative grain boundary energies from three-dimensional EBSD data [J]. Mater. Sci. Technol., 2010, 26: 661
|
89 |
Tang M, Carter W C, Cannon R M. Grain boundary transitions in binary alloys [J]. Phys. Rev. Lett., 2006, 97: 075502
|
90 |
Luo J, Shi X M. Grain boundary disordering in binary alloys [J]. Appl. Phys. Lett., 2008, 92: 101901
|
91 |
Shi X M, Luo J. Decreasing the grain boundary diffusivity in binary alloys with increasing temperature [J]. Phys. Rev. Lett., 2010, 105: 236102
|
92 |
Luo J. Developing Interfacial phase diagrams for applications in activated sintering and beyond: current status and future directions [J]. J. Am. Ceram. Soc., 2012, 95: 2358
|
93 |
Zhou N X, Hu T, Luo J. Grain boundary complexions in multicomponent alloys: Challenges and opportunities [J]. Curr. Opin. Solid State Mater. Sci., 2016, 20: 268
|
94 |
Kamachali R D. A model for grain boundary thermodynamics [J]. RSC Adv., 2020, 10: 26728
|
95 |
Benedictus R, Böttger A, Mittemeijer E J. Thermodynamic model for solid-state amorphization in binary systems at interfaces and grain boundaries [J]. Phys. Rev., 1996, 54B: 9109
|
96 |
Jeurgens L P H, Wang Z M, Mittemeijer E J. Thermodynamics of reactions and phase transformations at interfaces and surfaces [J]. Int. J. Mater. Res., 2009, 100: 1281
|
97 |
Turnbull D. Theory of grain boundary migration rates [J]. JOM, 1951, 3: 661
|
98 |
Redlich O, Kister A T. Algebraic representation of thermodynamic properties and the classification of solutions [J]. Ind. Eng. Chem., 1948, 40: 345
|
99 |
Grolier V, Schmid-Fetzer R. Experimental study of Au-Pt-Sn phase equilibria and thermodynamic assessment of the Au-Pt and Au-Pt-Sn systems [J]. J. Electron. Mater., 2008, 37: 264
|
100 |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
|
100 |
宿彦京, 付华栋, 白 洋等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|