Please wait a minute...
金属学报  2021, Vol. 57 Issue (9): 1155-1170    DOI: 10.11900/0412.1961.2020.00438
  综述 本期目录 | 过刊浏览 |
钕铁硼永磁晶界扩散技术和理论发展的几个问题
刘仲武(), 何家毅
华南理工大学 材料科学与工程学院 广州 510640
Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets
LIU Zhongwu(), HE Jiayi
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
引用本文:

刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.
Zhongwu LIU, Jiayi HE. Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets[J]. Acta Metall Sin, 2021, 57(9): 1155-1170.

全文: PDF(4174 KB)   HTML
摘要: 

钕铁硼永磁在新能源、信息通讯和智能制造等领域有着广泛的应用。电动汽车驱动电机、风电系统发电机等对钕铁硼磁体的高温性能和矫顽力提出了更高的要求。重稀土Tb和Dy可以显著提高钕铁硼磁体的各向异性场,但降低了剩磁,增加了成本。21世纪初出现的晶界扩散技术是稀土永磁制造领域的一项重大进展。它通过将重稀土元素或稀土合金以晶界扩散的方式渗透入磁体,在有效提高磁体矫顽力的同时,大幅降低重稀土含量,提高性价比。晶界扩散技术发展至今,引起业内的广泛关注并已实现工业化,但在技术和理论层面上仍存在一些关键问题。本文基于国内外最新进展和作者团队的研究工作,总结了晶界扩散工艺目前亟需解决的问题及可能的解决措施。对厚磁体的晶界扩散技术、晶界扩散中各向异性行为的利用、低成本扩散剂的选择、晶界扩散与现存工艺的结合、晶界扩散对其他服役性能的影响以及晶界扩散的相关理论发展等问题进行了阐述,并对晶界扩散的未来发展趋势进行了展望。

关键词 永磁材料钕铁硼晶界扩散重稀土矫顽力    
Abstract

Nd-Fe-B based permanent magnets have been widely used in many industries, including renewable energy, information and communication, and intelligent manufacturing. The applications in the electric vehicle drive motors and wind power system generators set high requirements on the elevated temperature performance and coercivity for Nd-Fe-B magnets. Heavy rare earth (HRE) of Tb and Dy have been frequently used to substitute Nd to enhance the anisotropy field of the magnets. However, introducing these HRE elements reduces the remanence of magnets and increases the total price of end-products. The grain boundary diffusion (GBD) process, invented at the beginning of this century, is a significant progress in the field of rare earth permanent magnet manufacturing. The coercivity can be significantly improved by diffusing HRE elements or rare earth alloys into the magnet along the grain boundary. Simultaneously, the reduced heavy rare earth consumption and enhanced performance-cost ratio can also be realized. Although the GBD process has attracted much attention and has been quickly industrialized since its appearance, some key issues still exist on technical and theoretical levels. Based on the latest domestic and overseas developments and the research results from the authors' group, this paper summarizes the urgent problems and feasible solutions for the GBD process. Several issues are described in this report, including the GBD process for thick magnets, utilization of anisotropic behavior of GBD, selection of low-cost diffusion sources, combination of GBD with the existing process, influence of GBD on the service performance, and advancement of GBD related theories. The challenges and opportunities in the future development of the GBD process for Nd-Fe-B based magnets are also highlighted.

Key wordspermanent magnet    Nd-Fe-B    grain boundary diffusion    heavy rare earth    coercivity
收稿日期: 2020-11-02     
ZTFLH:  TM273  
基金资助:国家自然科学基金项目(51774146);江西省重大科技研发专项项目(20203ABC28W006)
作者简介: 刘仲武,男,1971年生,教授,博士
图1  烧结钕铁硼晶粒结构与晶界扩散示意图
图2  工业生产中涂覆晶界扩散剂的示意图与不同重稀土扩散剂(氟化物、氧化物、氢化物、金属与合金)对烧结磁体的扩散效果[16,20~28]
图3  通过掺杂与合金化提高扩散剂速率的原理图
图4  原位晶界扩散原理图及其对磁性能提升效果[39]
图5  放电等离子烧结磁体多层晶界扩散的第二象限退磁曲线和磁学性能
图6  三代晶界扩散剂的发展示意图
图7  重稀土晶界扩散的原理图
A&DOxideFluorideHydrideMetal/alloy
Diffusion efficiencyLowModerateHighHigh
Cost advantageHighModerateLowLow
Level of “green”ModerateLowHighHigh
表1  不同重稀土扩散剂的优劣势
图8  轻稀土晶界扩散原理图及不同成分Pr-Al-Cu合金晶界扩散处理前后N50烧结磁体的退磁曲线[52]
图9  Cu的添加对烧结磁体微观组织的影响
图10  ZnO晶界扩散原理图与不同工艺ZnO扩散处理前后的退磁曲线[61]
图11  Pr7.03Nd21.84Ho2(Fe, M)balB0.95磁体和在不同方向进行DyHx扩散后磁体的退磁曲线[64]
图12  晶界扩散各向异性行为的微磁学模拟模型、晶粒结构以及磁化分布[67]
图13  晶界扩散与现存烧结工艺的结合:与气流磨结合的重稀土蒸气包覆、冷压前的双合金粉末混合、致密化成型前的扩散剂包覆和致密化成型后的扩散剂包覆(a) HRE vapor coating (b) diffusate coating(c) diffusate coating before sintering (d) diffusate coating after sintering
图14  原始磁体和Pr-Al-Cu、La-Al-Cu和Al-Cu扩散磁体的极化曲线及其腐蚀后的微观结构[49]
图15  Pr-Al-Cu合金扩散前后磁体的抗压曲线及断裂后的形貌[78]
图16  烧结和热变形Nd-Fe-B磁体之间的结构-性能关系对比图
图17  晶界扩散制备高矫顽力高剩磁黏结磁体的原理示意图
图18  超亚铁磁结构的示意图
1 Coey J M D. Hard magnetic materials: A perspective [J]. IEEE Trans. Magn., 2011, 47: 4671
2 Gutfleisch O, Willard M A, Brück E, et al. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient [J]. Adv. Mater., 2011, 23: 821
3 Coey J M D. Perspective and prospects for rare earth permanent magnets [J]. Engineering, 2020, 6: 119
4 Hirosawa S, Matsuura Y, Yamamoto H, et al. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals [J]. J. Appl. Phys., 1986, 59: 873
5 Oono N, Sagawa M, Kasada R, et al. Production of thick high-performance sintered neodymium magnets by grain boundary diffusion treatment with dysprosium-nickel-aluminum alloy [J]. J. Magn. Magn. Mater., 2011, 323: 297
6 Sepehri-Amin H, Une Y, Ohkubo T, et al. Microstructure of fine-grained Nd-Fe-B sintered magnets with high coercivity [J]. Scr. Mater., 2011, 65: 396
7 Sugimoto S. Current status and recent topics of rare-earth permanent magnets [J]. J. Phys., 44D: 064001
8 Hono K, Sepehri-Amin H. Prospect for HRE-free high coercivity Nd-Fe-B permanent magnets [J]. Scr. Mater., 2018, 151: 6
9 Kowalczyk A, Wrzeciono A. Structural and magnetic characteristics of R2Fe14-xCuxB systems (R = Y, Nd and Gd) [J]. J. Magn. Magn. Mater., 1988, 74: 260
10 Davies B E, Mottram R S, Harris I R. Recent developments in the sintering of NdFeB [J]. Mater. Chem. Phys., 2001, 67: 272
11 Liu Z W, Davies H A. Irreversible magnetic losses for melt-spun nanocrystalline Nd/Pr-(Dy)-Fe/Co-B ribbons [J]. J. Phys., 2007, 40D: 315
12 Périgo E A, Titov I, Weber R, et al. Small-angle neutron scattering study of coercivity enhancement in grain-boundary-diffused Nd-Fe-B sintered magnets [J]. J. Alloys Compd., 2016, 677: 139
13 Smith Stegen K. Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis [J]. Energy Policy, 2015, 79: 1
14 Zakotnik M, Tudor C O. Commercial-scale recycling of NdFeB-type magnets with grain boundary modification yields products with ‘designer properties’ that exceed those of starting materials [J]. Waste Manage., 2015, 44: 48
15 Trench A, Sykes J P. Rare earth permanent magnets and their place in the future economy [J]. Engineering, 2020, 6: 115
16 Nakamura H, Hirota K, Shimao M, et al. Magnetic properties of extremely small Nd-Fe-B sintered magnets [J]. IEEE Trans. Magn., 2005, 41: 3844
17 Tomše T, Tremelling D, Kessler R, et al. Multicomponent permanent magnets for enhanced electrical device efficiency [J]. J. Magn. Magn. Mater., 2020, 494: 165750
18 Cui X G, Wang X H, Cui C Y, et al. Research progress in Grain boundary diffusion modification, microstructures and properties of sintered Nd-Fe-B magnets [J]. Chin. J. Rare Met., 2018, 42: 315
18 崔熙贵, 王兴华, 崔承云等. 烧结钕铁硼的晶界扩散改性、结构与性能研究进展 [J]. 稀有金属, 2018, 42: 315
19 Tan M, Zhao Y, Chen H S, et al. Research progress on grain boundary diffused Nd-Fe-B magnets [J]. Powder Metall. Ind., 2019, 29(2): 66
19 谭 敏, 赵 扬, 陈红升等. 钕铁硼晶界扩散研究进展 [J]. 粉末冶金工业, 2019, 29(2): 66
20 Soderžnik M, Rožman K Ž, Kobe S, et al. The grain-boundary diffusion process in Nd-Fe-B sintered magnets based on the electrophoretic deposition of DyF3 [J]. Intermetallics, 2012, 23: 158
21 Bae K H, Kim T H, Lee S R, et al. Magnetic and microstructural characteristics of DyF3/DyHx dip-coated Nd-Fe-B sintered magnets [J]. J. Alloys Compd., 2014, 612: 183
22 Liu W Q, Chang C, Yue M, et al. Coercivity, microstructure, and thermal stability of sintered Nd-Fe-B magnets by grain boundary diffusion with TbH3 nanoparticles [J]. Rare Met., 2017, 36: 718
23 Ji W X, Liu W Q, Yue M, et al. Coercivity enhancement of recycled Nd-Fe-B sintered magnets by grain boundary diffusion with DyH3 nano-particles [J]. Physica, 2015, 476B: 147
24 Soderžnik M, Korent M, Žagar Soderžnik K, et al. High-coercivity Nd-Fe-B magnets obtained with the electrophoretic deposition of submicron TbF3 followed by the grain-boundary diffusion process [J]. Acta Mater., 2016, 115: 278
25 Loewe K, Benke D, Kübel C, et al. Grain boundary diffusion of different rare earth elements in Nd-Fe-B sintered magnets by experiment and FEM simulation [J]. Acta Mater., 2017, 124: 421
26 Lu K C, Bao X Q, Tang M H, et al. Boundary optimization and coercivity enhancement of high (BH)max Nd-Fe-B magnet by diffusing Pr-Tb-Cu-Al alloys [J]. Scr. Mater., 2017, 138: 83
27 Di J H, Ding G F, Tang X, et al. Highly efficient Tb-utilization in sintered Nd-Fe-B magnets by Al aided TbH2 grain boundary diffusion [J]. Scr. Mater., 2018, 155: 50
28 Chen G X, Bao X Q, Lu K C, et al. Microstructure and magnetic properties of Nd-Fe-B sintered magnet by diffusing Pr-Cu-Al and Pr-Tb-Cu-Al alloys [J]. J. Magn. Magn. Mater., 2019, 477: 17
29 Suss D, Schrefl T, Fidler J. Micromagnetics simulation of high energy density permanent magnets [J]. IEEE Trans. Magn., 2000, 36: 3282
30 Oikawa T, Yokota H, Ohkubo T, et al. Large-scale micromagnetic simulation of Nd-Fe-B sintered magnets with Dy-rich shell structures [J]. AIP Adv., 2016, 6: 056006
31 Lee M W, Bae K H, Lee S R, et al. Microstructure and magnetic properties of NdFeB sintered magnets diffusion-treated with Cu/Al mixed dyco alloy-powder [J]. Arch. Metall. Mater., 2017, 62: 1263
32 Lu K C, Bao X Q, Tang M H, et al. Influence of annealing on microstructural and magnetic properties of Nd-Fe-B magnets by grain boundary diffusion with Pr-Cu and Dy-Cu alloys [J]. J. Magn. Magn. Mater., 2017, 441: 517
33 Sepehri-Amin H, Liu J, Ohkubo T, et al. Enhancement of coercivity of hot-deformed Nd-Fe-B anisotropic magnet by low-temperature grain boundary diffusion of Nd60Dy20Cu20 eutectic alloy [J]. Scr. Mater., 2013, 69: 647
34 Tang M H, Bao X Q, Lu K C, et al. Boundary structure modification and magnetic properties enhancement of Nd-Fe-B sintered magnets by diffusing (PrDy)-Cu alloy [J]. Scr. Mater., 2016, 117: 60
35 Liu L H, Sepehri-Amin H, Ohkubo T, et al. Coercivity enhancement of hot-deformed Nd-Fe-B magnets by the eutectic grain boundary diffusion process using Nd62Dy20Al18 alloy [J]. Scr. Mater., 2017, 129: 44
36 Liu Y K, Liao X F, He J Y, et al. Magnetic properties and microstructure evolution of in-situ Tb-Cu diffusion treated hot-deformed Nd-Fe-B magnets [J]. J. Magn. Magn. Mater., 2020, 504: 166685
37 Liang L P, Ma T Y, Zhang P, et al. Coercivity enhancement of NdFeB sintered magnets by low melting point Dy32.5Fe62Cu5.5 alloy modification [J]. J. Magn. Magn. Mater., 2014, 355: 131
38 Liang L P, Ma T Y, Zhang P, et al. Effects of Dy71.5Fe28.5 intergranular addition on the microstructure and the corrosion resistance of Nd-Fe-B sintered magnets [J]. J. Magn. Magn. Mater., 2015, 384: 133
39 Li X B, Liu S, Cao X J, et al. Coercivity and thermal stability improvement in sintered Nd-Fe-B permanent magnets by intergranular addition of Dy-Mn alloy [J]. J. Magn. Magn. Mater., 2016, 407: 247
40 Liu X L, Zhang Y J, Zhang P, et al. Microstructure evolution of Dy69Ni31-added Nd-Fe-B sintered magnets during annealing [J]. J. Magn. Magn. Mater., 2019, 486: 165260
41 Lee W R. Hot-pressed neodymium-iron-boron magnets [J]. Appl. Phys. Lett., 1985, 46: 790
42 Bance S, Seebacher B, Schrefl T, et al. Grain-size dependent demagnetizing factors in permanent magnets [J]. J. Appl. Phys., 2014, 116: 233903
43 Sepehri-Amin H, Ohkubo T, Gruber M, et al. Micromagnetic simulations on the grain size dependence of coercivity in anisotropic Nd-Fe-B sintered magnets [J]. Scr. Mater., 2014, 89: 29
44 Zhang T Q, Chen F G, Wang J, et al. Improvement of magnetic performance of hot-deformed Nd-Fe-B magnets by secondary deformation process after Nd-Cu eutectic diffusion [J]. Acta Mater., 2016, 118: 374
45 Sepehri-Amin H, Ohkubo T, Nishiuchi T, et al. Coercivity enhancement of hydrogenation-disproportionation-desorption-recombination processed Nd-Fe-B powders by the diffusion of Nd-Cu eutectic alloys [J]. Scr. Mater., 2010, 63: 1124
46 Sepehri-Amin H, Prabhu D, Hayashi M, et al. Coercivity enhancement of rapidly solidified Nd-Fe-B magnet powders [J]. Scr. Mater., 2013, 68: 167
47 Zhou Q, Liu Z W, Zhong X C, et al. Properties improvement and structural optimization of sintered NdFeB magnets by non-rare earth compound grain boundary diffusion [J]. Mater. Des., 2015, 86: 114
48 Chen W, Huang Y L, Luo J M, et al. Microstructure and improved properties of sintered Nd-Fe-B magnets by grain boundary diffusion of non-rare earth [J]. J. Magn. Magn. Mater., 2019, 476: 134
49 Zeng H X, Liu Z W, Zhang J S, et al. Towards the diffusion source cost reduction for NdFeB grain boundary diffusion process [J]. J. Mater. Sci. Technol., 2020, 36: 50
50 Löewe K, Brombacher C, Katter M, et al. Temperature-dependent Dy diffusion processes in Nd-Fe-B permanent magnets [J]. Acta Mater., 2015, 83: 248
51 Kim T H, Sasaki T T, Koyama T, et al. Formation mechanism of Tb-rich shell in grain boundary diffusion processed Nd-Fe-B sintered magnets [J]. Scr. Mater., 2020, 178: 433
52 Zeng H X, Liu Z W, Li W, et al. Significantly enhancing the coercivity of NdFeB magnets by ternary Pr-Al-Cu alloys diffusion and understanding the elements diffusion behavior [J]. J. Magn. Magn. Mater., 2019, 471: 97
53 Yan M, Jin J Y, Ma T Y. Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets [J]. Chin. Phys., 2019, 28B: 077507
54 Zeng H X, Wang Q X, Zhang J S, et al. Grain boundary diffusion treatment of sintered NdFeB magnets by low cost La-Al-Cu alloys with various Al/Cu ratios [J]. J. Magn. Magn. Mater., 2019, 490: 165498
55 Zeng H X, Yu H Y, Zhou Q, et al. Clarifying the effects of La and Ce in the grain boundary diffusion sources on sintered NdFeB magnets [J]. Mater. Res. Express, 2019, 6: 106105
56 Wong Y J, Chang H W, Lee Y I, et al. Comparison on the coercivity enhancement of sintered NdFeB magnets by grain boundary diffusion with low-melting (Tb, R)75Cu25 alloys (R = None, Y, La, and Ce) [J]. AIP Adv., 2019, 9: 125238
57 Ni J J, Ma T Y, Cui X G, et al. Improvement of corrosion resistance and magnetic properties of Nd-Fe-B sintered magnets by Al85Cu15 intergranular addition [J]. J. Alloys Compd., 2010, 502: 346
58 Zhang X F, Ju X M, Liu Y L, et al. The effect of the magnetic properties of NdFeB magnets on the Zn or ZnO intergranular addition [J]. Adv. Mater. Res., 2012, 630: 30
59 Kim T H, Lee S R, Namkumg S, et al. A study on the Nd-rich phase evolution in the Nd-Fe-B sintered magnet and its mechanism during post-sintering annealing [J]. J. Alloys Compd., 2012, 537: 261
60 Kim T H, Lee S R, Lee M W, et al. Dependence of magnetic, phase-transformation and microstructural characteristics on the Cu content of Nd-Fe-B sintered magnet [J]. Acta Mater., 2014, 66: 12
61 Zhou Q. Grain boundary structure and grain boundary phase modifications and their effects on properties of sintered NdFeB permanent magnets [D]. Guangzhou: South China University of Technology, 2016
61 周 庆. 烧结NdFeB永磁晶界结构和晶界相调控及其对性能影响 [D]. 广州: 华南理工大学, 2016
62 Yan X T, Hou Y H, Shi Z Q, et al. Enhanced magnetic properties and improving thermal stability for sintered Nd-Fe-B magnets prepared by two-step grain boundary diffusion processes [J]. J. Magn. Magn. Mater., 2019, 491: 165541
63 Niu E, Chen Z A, Ye X Z, et al. Anisotropy of grain boundary diffusion in sintered Nd-Fe-B magnet [J]. Appl. Phys. Lett., 2014, 104: 262405
64 Ma T Y, Wang X J, Liu X L, et al. Coercivity enhancements of Nd-Fe-B sintered magnets by diffusing DyHx along different axes [J]. J. Phys., 2015, 48D: 215001
65 Sasaki T T, Ohkubo T, Hono K. Structure and chemical compositions of the grain boundary phase in Nd-Fe-B sintered magnets [J]. Acta Mater., 2016, 115: 269
66 Kim T H, Lee S R, Yun S J, et al. Anisotropic diffusion mechanism in grain boundary diffusion processed Nd-Fe-B sintered magnet [J]. Acta Mater., 2016, 112: 59
67 Li W, Zhou Q, Zhao L Z, et al. Micromagnetic simulation of anisotropic grain boundary diffusion for sintered Nd-Fe-B magnets [J]. J. Magn. Magn. Mater., 2018, 451: 704
68 El-Moneim A A, Gebert A. Electrochemical characterization of galvanically coupled single phases and nanocrystalline NdFeB-based magnets in NaCl solutions [J]. J. Appl. Electrochem., 2003, 33: 795
69 El-Moneim A A. Passivity and its breakdown of sintered NdFeB-based magnets in chloride containing solution [J]. Corros. Sci., 2004, 46: 2517
70 Rada M, Gebert A, Mazilu I, et al. Corrosion studies on highly textured Nd-Fe-B sintered magnets [J]. J. Alloys Compd., 2006, 415: 111
71 Minowa T, Yoshikawa M, Honshima M. Improvement of the corrosion resistance on Nd-Fe-B magnet with nickel plating [J]. IEEE Trans. Magn., 1989, 25: 3776
72 Cheng C W, Man H C, Cheng F T. Magnetic and corrosion characteristics of Nd-Fe-B magnet with various surface coatings [J]. IEEE Trans. Magn., 1997, 33: 3910
73 Mao S D, Yang H X, Li J L, et al. The properties of aluminium coating on sintered NdFeB by DC magnetron sputtering [J]. Vacuum, 2011, 85: 772
74 Zhang P J, Liu J Q, Xu G Q, et al. Anticorrosive property of Al coatings on sintered NdFeB substrates via plasma assisted physical vapor deposition method [J]. Surf. Coat. Technol., 2015, 282: 86
75 He J, Liao X, Lan X, et al. Annealed Al-Cr coating: A hard anti-corrosion coating with grain boundary modification effect for Nd-Fe-B magnets [J]. J. Alloys Compd., 2021, 870: 159229
76 Ni J J, Ma T Y, Yan M. Improvement of corrosion resistance in Nd-Fe-B magnets through grain boundaries restructuring [J]. Mater. Lett., 2012, 75: 1
77 Jin J Y. Structure and performance of La/Ce-rich multi-main-phase RE-Fe-B permanent magnets [D]. Hangzhou: Zhejiang University, 2016
77 金佳莹. 富La/Ce多主相稀土永磁材料的结构和性能研究 [D]. 杭州: 浙江大学, 2016
78 Zeng H X. Effects of grain boundary diffusion process using various alloys on the microstructure and properties of sintered NdFeB magnets [D]. Guangzhou: South China University of Technology, 2019
78 曾慧欣. 不同合金晶界扩散对烧结NdFeB永磁显微结构及性能的影响 [D]. 广州: 华南理工大学, 2019
79 Park K T, Hiraga K, Sagawa M. Effect of metal-coating and consecutive heat treatment on coercivity of thin Nd-Fe-B sintered magnets [A]. Proceedings of the 16th International Workshop on Rare-Earth Magnets and Their Applications [C]. Sendai, Japan: Japan Institute of Metals, 2000: 257
80 Zhang T Q, Chen F G, Zheng Y, et al. Anisotropic behavior of grain boundary diffusion in hot-deformed Nd-Fe-B magnet [J]. Scr. Mater., 2017, 129: 1
81 Sawatzki S, Schneider T, Yi M, et al. Anisotropic local hardening in hot-deformed Nd-Fe-B permanent magnets [J]. Acta Mater., 2018, 147: 176
82 Sepehri-Amin H, Liu L H, Ohkubo T, et al. Microstructure and temperature dependent of coercivity of hot-deformed Nd-Fe-B magnets diffusion processed with Pr-Cu alloy [J]. Acta Mater., 2015, 99: 297
83 Wang Z X, Zhang J J, Wang J Z, et al. Coercivity improvement of hot-deformed Nd-Fe-B magnets by stress-induced Pr-Cu eutectic diffusion [J]. Acta Mater., 2018, 156: 136
84 Song T T, Tang X, Yin W Z, et al. Magnetic properties improvement of hot-deformed Nd-Fe-B permanent magnets by Pr-Cu eutectic pre-diffusion process [J]. Acta Mater., 2019, 174: 332
85
86 Salazar D, Martín-Cid A, Madugundo R, et al. Coercivity enhancement in heavy rare earth-free NdFeB magnets by grain boundary diffusion process [J]. Appl. Phys. Lett., 2018, 113: 152402
87 Akdogan O, Dobrynin A, Le Roy D, et al. Superferrimagnetism in hard Nd-Fe-B thick films, an original concept for coercivity enhancement [J]. J. Appl. Phys., 2014, 115: 17A764
88 McGuiness P, Akdogan O, Asali A, et al. Replacement and Original Magnet Engineering Options (ROMEOs): A european seventh framework project to develop advanced permanent magnets without, or with reduced use of, critical raw materials [J]. JOM, 2015, 67: 1306
[1] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[2] 郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.
[3] 陈虹宇, 宋欣, 周相龙, 贾文涛, 袁涛, 马天宇. Sm2Co17磁体胞状组织边缘2:17R'相的透射电子显微镜表征[J]. 金属学报, 2021, 57(12): 1637-1644.
[4] 巩劭廷, 蒋成保, 张天丽. Fe对SmCo基高温永磁体微观结构及矫顽力的影响[J]. 金属学报, 2017, 53(6): 726-732.
[5] 马殿国,王英敏,李艳辉,张伟. Co含量对熔体快淬Fe55-xCoxPt15B30合金的组织结构与磁性能的影响[J]. 金属学报, 2017, 53(5): 609-614.
[6] 王倩 蒋成保. 350 ℃中温段SmCo永磁材料的研究[J]. 金属学报, 2011, 47(12): 1605-1610.
[7] 包小倩 高学绪 朱洁 张茂才 周寿增. Nd含量对纳米晶NdxFe94-xB6合金磁性能的影响[J]. 金属学报, 2009, 45(8): 988-993.
[8] 包小倩; 孙绪新; 高学绪; 张茂才; 董清飞; 周寿增 . 优化边界结构制备高矫顽力及高热稳定性烧结 Nd-Fe-B 磁体[J]. 金属学报, 2008, 44(7): 871-875 .
[9] 李丽娅; 易健宏; 黄伯云; 彭元东 . Sm2Co17基高温稀土永磁材料的显微结构与磁性[J]. 金属学报, 2005, 41(8): 791-794 .
[10] 郭朝晖; 李卫 . Sm(CobalFexCu0.088Zr0.025)7.5(x=0-0.30)烧结永磁体的磁性及其高温特性[J]. 金属学报, 2002, 38(8): 866-870 .
[11] 成问好; 李卫; 李传健; 李岫梅; 董生智 . 混合合金法添加Ga对Nd-Dy-Fe-co-B烧结磁体的磁性和微观结构的影响[J]. 金属学报, 2001, 37(12): 1271-1275 .
[12] 何叶青; 熊科北 . Nd-Fe-B铸锭的晶体生长特征[J]. 金属学报, 1999, 35(3): 271-274 .
[13] 高彦东; 张少卿; 刘伯操 . 纳米复相NdxFe94-xB6(x=7, 8, 9, 10)合金的结构与磁性能[J]. 金属学报, 1999, 35(10): 1103-1106 .
[14] 李继光;孙旭东;王雅蓉;董文新;茹红强;郝士明. α-Al_2O_3纳米粉烧结初期的恒温实验研究[J]. 金属学报, 1998, 34(2): 189-194.
[15] 肖耀福;张正义;唐伟忠. 获得高矫顽力NdFeB粉末的新途径——HDD法[J]. 金属学报, 1992, 28(8): 91-94.