|
|
钕铁硼永磁晶界扩散技术和理论发展的几个问题 |
刘仲武( ), 何家毅 |
华南理工大学 材料科学与工程学院 广州 510640 |
|
Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets |
LIU Zhongwu( ), HE Jiayi |
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China |
引用本文:
刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.
Zhongwu LIU,
Jiayi HE.
Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets[J]. Acta Metall Sin, 2021, 57(9): 1155-1170.
1 |
Coey J M D. Hard magnetic materials: A perspective [J]. IEEE Trans. Magn., 2011, 47: 4671
|
2 |
Gutfleisch O, Willard M A, Brück E, et al. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient [J]. Adv. Mater., 2011, 23: 821
|
3 |
Coey J M D. Perspective and prospects for rare earth permanent magnets [J]. Engineering, 2020, 6: 119
|
4 |
Hirosawa S, Matsuura Y, Yamamoto H, et al. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals [J]. J. Appl. Phys., 1986, 59: 873
|
5 |
Oono N, Sagawa M, Kasada R, et al. Production of thick high-performance sintered neodymium magnets by grain boundary diffusion treatment with dysprosium-nickel-aluminum alloy [J]. J. Magn. Magn. Mater., 2011, 323: 297
|
6 |
Sepehri-Amin H, Une Y, Ohkubo T, et al. Microstructure of fine-grained Nd-Fe-B sintered magnets with high coercivity [J]. Scr. Mater., 2011, 65: 396
|
7 |
Sugimoto S. Current status and recent topics of rare-earth permanent magnets [J]. J. Phys., 44D: 064001
|
8 |
Hono K, Sepehri-Amin H. Prospect for HRE-free high coercivity Nd-Fe-B permanent magnets [J]. Scr. Mater., 2018, 151: 6
|
9 |
Kowalczyk A, Wrzeciono A. Structural and magnetic characteristics of R2Fe14-xCuxB systems (R = Y, Nd and Gd) [J]. J. Magn. Magn. Mater., 1988, 74: 260
|
10 |
Davies B E, Mottram R S, Harris I R. Recent developments in the sintering of NdFeB [J]. Mater. Chem. Phys., 2001, 67: 272
|
11 |
Liu Z W, Davies H A. Irreversible magnetic losses for melt-spun nanocrystalline Nd/Pr-(Dy)-Fe/Co-B ribbons [J]. J. Phys., 2007, 40D: 315
|
12 |
Périgo E A, Titov I, Weber R, et al. Small-angle neutron scattering study of coercivity enhancement in grain-boundary-diffused Nd-Fe-B sintered magnets [J]. J. Alloys Compd., 2016, 677: 139
|
13 |
Smith Stegen K. Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis [J]. Energy Policy, 2015, 79: 1
|
14 |
Zakotnik M, Tudor C O. Commercial-scale recycling of NdFeB-type magnets with grain boundary modification yields products with ‘designer properties’ that exceed those of starting materials [J]. Waste Manage., 2015, 44: 48
|
15 |
Trench A, Sykes J P. Rare earth permanent magnets and their place in the future economy [J]. Engineering, 2020, 6: 115
|
16 |
Nakamura H, Hirota K, Shimao M, et al. Magnetic properties of extremely small Nd-Fe-B sintered magnets [J]. IEEE Trans. Magn., 2005, 41: 3844
|
17 |
Tomše T, Tremelling D, Kessler R, et al. Multicomponent permanent magnets for enhanced electrical device efficiency [J]. J. Magn. Magn. Mater., 2020, 494: 165750
|
18 |
Cui X G, Wang X H, Cui C Y, et al. Research progress in Grain boundary diffusion modification, microstructures and properties of sintered Nd-Fe-B magnets [J]. Chin. J. Rare Met., 2018, 42: 315
|
18 |
崔熙贵, 王兴华, 崔承云等. 烧结钕铁硼的晶界扩散改性、结构与性能研究进展 [J]. 稀有金属, 2018, 42: 315
|
19 |
Tan M, Zhao Y, Chen H S, et al. Research progress on grain boundary diffused Nd-Fe-B magnets [J]. Powder Metall. Ind., 2019, 29(2): 66
|
19 |
谭 敏, 赵 扬, 陈红升等. 钕铁硼晶界扩散研究进展 [J]. 粉末冶金工业, 2019, 29(2): 66
|
20 |
Soderžnik M, Rožman K Ž, Kobe S, et al. The grain-boundary diffusion process in Nd-Fe-B sintered magnets based on the electrophoretic deposition of DyF3 [J]. Intermetallics, 2012, 23: 158
|
21 |
Bae K H, Kim T H, Lee S R, et al. Magnetic and microstructural characteristics of DyF3/DyHx dip-coated Nd-Fe-B sintered magnets [J]. J. Alloys Compd., 2014, 612: 183
|
22 |
Liu W Q, Chang C, Yue M, et al. Coercivity, microstructure, and thermal stability of sintered Nd-Fe-B magnets by grain boundary diffusion with TbH3 nanoparticles [J]. Rare Met., 2017, 36: 718
|
23 |
Ji W X, Liu W Q, Yue M, et al. Coercivity enhancement of recycled Nd-Fe-B sintered magnets by grain boundary diffusion with DyH3 nano-particles [J]. Physica, 2015, 476B: 147
|
24 |
Soderžnik M, Korent M, Žagar Soderžnik K, et al. High-coercivity Nd-Fe-B magnets obtained with the electrophoretic deposition of submicron TbF3 followed by the grain-boundary diffusion process [J]. Acta Mater., 2016, 115: 278
|
25 |
Loewe K, Benke D, Kübel C, et al. Grain boundary diffusion of different rare earth elements in Nd-Fe-B sintered magnets by experiment and FEM simulation [J]. Acta Mater., 2017, 124: 421
|
26 |
Lu K C, Bao X Q, Tang M H, et al. Boundary optimization and coercivity enhancement of high (BH)max Nd-Fe-B magnet by diffusing Pr-Tb-Cu-Al alloys [J]. Scr. Mater., 2017, 138: 83
|
27 |
Di J H, Ding G F, Tang X, et al. Highly efficient Tb-utilization in sintered Nd-Fe-B magnets by Al aided TbH2 grain boundary diffusion [J]. Scr. Mater., 2018, 155: 50
|
28 |
Chen G X, Bao X Q, Lu K C, et al. Microstructure and magnetic properties of Nd-Fe-B sintered magnet by diffusing Pr-Cu-Al and Pr-Tb-Cu-Al alloys [J]. J. Magn. Magn. Mater., 2019, 477: 17
|
29 |
Suss D, Schrefl T, Fidler J. Micromagnetics simulation of high energy density permanent magnets [J]. IEEE Trans. Magn., 2000, 36: 3282
|
30 |
Oikawa T, Yokota H, Ohkubo T, et al. Large-scale micromagnetic simulation of Nd-Fe-B sintered magnets with Dy-rich shell structures [J]. AIP Adv., 2016, 6: 056006
|
31 |
Lee M W, Bae K H, Lee S R, et al. Microstructure and magnetic properties of NdFeB sintered magnets diffusion-treated with Cu/Al mixed dyco alloy-powder [J]. Arch. Metall. Mater., 2017, 62: 1263
|
32 |
Lu K C, Bao X Q, Tang M H, et al. Influence of annealing on microstructural and magnetic properties of Nd-Fe-B magnets by grain boundary diffusion with Pr-Cu and Dy-Cu alloys [J]. J. Magn. Magn. Mater., 2017, 441: 517
|
33 |
Sepehri-Amin H, Liu J, Ohkubo T, et al. Enhancement of coercivity of hot-deformed Nd-Fe-B anisotropic magnet by low-temperature grain boundary diffusion of Nd60Dy20Cu20 eutectic alloy [J]. Scr. Mater., 2013, 69: 647
|
34 |
Tang M H, Bao X Q, Lu K C, et al. Boundary structure modification and magnetic properties enhancement of Nd-Fe-B sintered magnets by diffusing (PrDy)-Cu alloy [J]. Scr. Mater., 2016, 117: 60
|
35 |
Liu L H, Sepehri-Amin H, Ohkubo T, et al. Coercivity enhancement of hot-deformed Nd-Fe-B magnets by the eutectic grain boundary diffusion process using Nd62Dy20Al18 alloy [J]. Scr. Mater., 2017, 129: 44
|
36 |
Liu Y K, Liao X F, He J Y, et al. Magnetic properties and microstructure evolution of in-situ Tb-Cu diffusion treated hot-deformed Nd-Fe-B magnets [J]. J. Magn. Magn. Mater., 2020, 504: 166685
|
37 |
Liang L P, Ma T Y, Zhang P, et al. Coercivity enhancement of NdFeB sintered magnets by low melting point Dy32.5Fe62Cu5.5 alloy modification [J]. J. Magn. Magn. Mater., 2014, 355: 131
|
38 |
Liang L P, Ma T Y, Zhang P, et al. Effects of Dy71.5Fe28.5 intergranular addition on the microstructure and the corrosion resistance of Nd-Fe-B sintered magnets [J]. J. Magn. Magn. Mater., 2015, 384: 133
|
39 |
Li X B, Liu S, Cao X J, et al. Coercivity and thermal stability improvement in sintered Nd-Fe-B permanent magnets by intergranular addition of Dy-Mn alloy [J]. J. Magn. Magn. Mater., 2016, 407: 247
|
40 |
Liu X L, Zhang Y J, Zhang P, et al. Microstructure evolution of Dy69Ni31-added Nd-Fe-B sintered magnets during annealing [J]. J. Magn. Magn. Mater., 2019, 486: 165260
|
41 |
Lee W R. Hot-pressed neodymium-iron-boron magnets [J]. Appl. Phys. Lett., 1985, 46: 790
|
42 |
Bance S, Seebacher B, Schrefl T, et al. Grain-size dependent demagnetizing factors in permanent magnets [J]. J. Appl. Phys., 2014, 116: 233903
|
43 |
Sepehri-Amin H, Ohkubo T, Gruber M, et al. Micromagnetic simulations on the grain size dependence of coercivity in anisotropic Nd-Fe-B sintered magnets [J]. Scr. Mater., 2014, 89: 29
|
44 |
Zhang T Q, Chen F G, Wang J, et al. Improvement of magnetic performance of hot-deformed Nd-Fe-B magnets by secondary deformation process after Nd-Cu eutectic diffusion [J]. Acta Mater., 2016, 118: 374
|
45 |
Sepehri-Amin H, Ohkubo T, Nishiuchi T, et al. Coercivity enhancement of hydrogenation-disproportionation-desorption-recombination processed Nd-Fe-B powders by the diffusion of Nd-Cu eutectic alloys [J]. Scr. Mater., 2010, 63: 1124
|
46 |
Sepehri-Amin H, Prabhu D, Hayashi M, et al. Coercivity enhancement of rapidly solidified Nd-Fe-B magnet powders [J]. Scr. Mater., 2013, 68: 167
|
47 |
Zhou Q, Liu Z W, Zhong X C, et al. Properties improvement and structural optimization of sintered NdFeB magnets by non-rare earth compound grain boundary diffusion [J]. Mater. Des., 2015, 86: 114
|
48 |
Chen W, Huang Y L, Luo J M, et al. Microstructure and improved properties of sintered Nd-Fe-B magnets by grain boundary diffusion of non-rare earth [J]. J. Magn. Magn. Mater., 2019, 476: 134
|
49 |
Zeng H X, Liu Z W, Zhang J S, et al. Towards the diffusion source cost reduction for NdFeB grain boundary diffusion process [J]. J. Mater. Sci. Technol., 2020, 36: 50
|
50 |
Löewe K, Brombacher C, Katter M, et al. Temperature-dependent Dy diffusion processes in Nd-Fe-B permanent magnets [J]. Acta Mater., 2015, 83: 248
|
51 |
Kim T H, Sasaki T T, Koyama T, et al. Formation mechanism of Tb-rich shell in grain boundary diffusion processed Nd-Fe-B sintered magnets [J]. Scr. Mater., 2020, 178: 433
|
52 |
Zeng H X, Liu Z W, Li W, et al. Significantly enhancing the coercivity of NdFeB magnets by ternary Pr-Al-Cu alloys diffusion and understanding the elements diffusion behavior [J]. J. Magn. Magn. Mater., 2019, 471: 97
|
53 |
Yan M, Jin J Y, Ma T Y. Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets [J]. Chin. Phys., 2019, 28B: 077507
|
54 |
Zeng H X, Wang Q X, Zhang J S, et al. Grain boundary diffusion treatment of sintered NdFeB magnets by low cost La-Al-Cu alloys with various Al/Cu ratios [J]. J. Magn. Magn. Mater., 2019, 490: 165498
|
55 |
Zeng H X, Yu H Y, Zhou Q, et al. Clarifying the effects of La and Ce in the grain boundary diffusion sources on sintered NdFeB magnets [J]. Mater. Res. Express, 2019, 6: 106105
|
56 |
Wong Y J, Chang H W, Lee Y I, et al. Comparison on the coercivity enhancement of sintered NdFeB magnets by grain boundary diffusion with low-melting (Tb, R)75Cu25 alloys (R = None, Y, La, and Ce) [J]. AIP Adv., 2019, 9: 125238
|
57 |
Ni J J, Ma T Y, Cui X G, et al. Improvement of corrosion resistance and magnetic properties of Nd-Fe-B sintered magnets by Al85Cu15 intergranular addition [J]. J. Alloys Compd., 2010, 502: 346
|
58 |
Zhang X F, Ju X M, Liu Y L, et al. The effect of the magnetic properties of NdFeB magnets on the Zn or ZnO intergranular addition [J]. Adv. Mater. Res., 2012, 630: 30
|
59 |
Kim T H, Lee S R, Namkumg S, et al. A study on the Nd-rich phase evolution in the Nd-Fe-B sintered magnet and its mechanism during post-sintering annealing [J]. J. Alloys Compd., 2012, 537: 261
|
60 |
Kim T H, Lee S R, Lee M W, et al. Dependence of magnetic, phase-transformation and microstructural characteristics on the Cu content of Nd-Fe-B sintered magnet [J]. Acta Mater., 2014, 66: 12
|
61 |
Zhou Q. Grain boundary structure and grain boundary phase modifications and their effects on properties of sintered NdFeB permanent magnets [D]. Guangzhou: South China University of Technology, 2016
|
61 |
周 庆. 烧结NdFeB永磁晶界结构和晶界相调控及其对性能影响 [D]. 广州: 华南理工大学, 2016
|
62 |
Yan X T, Hou Y H, Shi Z Q, et al. Enhanced magnetic properties and improving thermal stability for sintered Nd-Fe-B magnets prepared by two-step grain boundary diffusion processes [J]. J. Magn. Magn. Mater., 2019, 491: 165541
|
63 |
Niu E, Chen Z A, Ye X Z, et al. Anisotropy of grain boundary diffusion in sintered Nd-Fe-B magnet [J]. Appl. Phys. Lett., 2014, 104: 262405
|
64 |
Ma T Y, Wang X J, Liu X L, et al. Coercivity enhancements of Nd-Fe-B sintered magnets by diffusing DyHx along different axes [J]. J. Phys., 2015, 48D: 215001
|
65 |
Sasaki T T, Ohkubo T, Hono K. Structure and chemical compositions of the grain boundary phase in Nd-Fe-B sintered magnets [J]. Acta Mater., 2016, 115: 269
|
66 |
Kim T H, Lee S R, Yun S J, et al. Anisotropic diffusion mechanism in grain boundary diffusion processed Nd-Fe-B sintered magnet [J]. Acta Mater., 2016, 112: 59
|
67 |
Li W, Zhou Q, Zhao L Z, et al. Micromagnetic simulation of anisotropic grain boundary diffusion for sintered Nd-Fe-B magnets [J]. J. Magn. Magn. Mater., 2018, 451: 704
|
68 |
El-Moneim A A, Gebert A. Electrochemical characterization of galvanically coupled single phases and nanocrystalline NdFeB-based magnets in NaCl solutions [J]. J. Appl. Electrochem., 2003, 33: 795
|
69 |
El-Moneim A A. Passivity and its breakdown of sintered NdFeB-based magnets in chloride containing solution [J]. Corros. Sci., 2004, 46: 2517
|
70 |
Rada M, Gebert A, Mazilu I, et al. Corrosion studies on highly textured Nd-Fe-B sintered magnets [J]. J. Alloys Compd., 2006, 415: 111
|
71 |
Minowa T, Yoshikawa M, Honshima M. Improvement of the corrosion resistance on Nd-Fe-B magnet with nickel plating [J]. IEEE Trans. Magn., 1989, 25: 3776
|
72 |
Cheng C W, Man H C, Cheng F T. Magnetic and corrosion characteristics of Nd-Fe-B magnet with various surface coatings [J]. IEEE Trans. Magn., 1997, 33: 3910
|
73 |
Mao S D, Yang H X, Li J L, et al. The properties of aluminium coating on sintered NdFeB by DC magnetron sputtering [J]. Vacuum, 2011, 85: 772
|
74 |
Zhang P J, Liu J Q, Xu G Q, et al. Anticorrosive property of Al coatings on sintered NdFeB substrates via plasma assisted physical vapor deposition method [J]. Surf. Coat. Technol., 2015, 282: 86
|
75 |
He J, Liao X, Lan X, et al. Annealed Al-Cr coating: A hard anti-corrosion coating with grain boundary modification effect for Nd-Fe-B magnets [J]. J. Alloys Compd., 2021, 870: 159229
|
76 |
Ni J J, Ma T Y, Yan M. Improvement of corrosion resistance in Nd-Fe-B magnets through grain boundaries restructuring [J]. Mater. Lett., 2012, 75: 1
|
77 |
Jin J Y. Structure and performance of La/Ce-rich multi-main-phase RE-Fe-B permanent magnets [D]. Hangzhou: Zhejiang University, 2016
|
77 |
金佳莹. 富La/Ce多主相稀土永磁材料的结构和性能研究 [D]. 杭州: 浙江大学, 2016
|
78 |
Zeng H X. Effects of grain boundary diffusion process using various alloys on the microstructure and properties of sintered NdFeB magnets [D]. Guangzhou: South China University of Technology, 2019
|
78 |
曾慧欣. 不同合金晶界扩散对烧结NdFeB永磁显微结构及性能的影响 [D]. 广州: 华南理工大学, 2019
|
79 |
Park K T, Hiraga K, Sagawa M. Effect of metal-coating and consecutive heat treatment on coercivity of thin Nd-Fe-B sintered magnets [A]. Proceedings of the 16th International Workshop on Rare-Earth Magnets and Their Applications [C]. Sendai, Japan: Japan Institute of Metals, 2000: 257
|
80 |
Zhang T Q, Chen F G, Zheng Y, et al. Anisotropic behavior of grain boundary diffusion in hot-deformed Nd-Fe-B magnet [J]. Scr. Mater., 2017, 129: 1
|
81 |
Sawatzki S, Schneider T, Yi M, et al. Anisotropic local hardening in hot-deformed Nd-Fe-B permanent magnets [J]. Acta Mater., 2018, 147: 176
|
82 |
Sepehri-Amin H, Liu L H, Ohkubo T, et al. Microstructure and temperature dependent of coercivity of hot-deformed Nd-Fe-B magnets diffusion processed with Pr-Cu alloy [J]. Acta Mater., 2015, 99: 297
|
83 |
Wang Z X, Zhang J J, Wang J Z, et al. Coercivity improvement of hot-deformed Nd-Fe-B magnets by stress-induced Pr-Cu eutectic diffusion [J]. Acta Mater., 2018, 156: 136
|
84 |
Song T T, Tang X, Yin W Z, et al. Magnetic properties improvement of hot-deformed Nd-Fe-B permanent magnets by Pr-Cu eutectic pre-diffusion process [J]. Acta Mater., 2019, 174: 332
|
85 |
|
86 |
Salazar D, Martín-Cid A, Madugundo R, et al. Coercivity enhancement in heavy rare earth-free NdFeB magnets by grain boundary diffusion process [J]. Appl. Phys. Lett., 2018, 113: 152402
|
87 |
Akdogan O, Dobrynin A, Le Roy D, et al. Superferrimagnetism in hard Nd-Fe-B thick films, an original concept for coercivity enhancement [J]. J. Appl. Phys., 2014, 115: 17A764
|
88 |
McGuiness P, Akdogan O, Asali A, et al. Replacement and Original Magnet Engineering Options (ROMEOs): A european seventh framework project to develop advanced permanent magnets without, or with reduced use of, critical raw materials [J]. JOM, 2015, 67: 1306
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|