|
|
体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟 |
梁晋洁1,2, 高宁2,3, 李玉红1( ) |
1 兰州大学核科学与技术学院 兰州 730000 2 中国科学院近代物理研究所 兰州 730000 3 山东大学(青岛)前沿交叉科学青岛研究院粒子物理和粒子辐照教育部重点实验室 青岛 266237 |
|
Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method |
LIANG Jinjie1,2, GAO Ning2,3, LI Yuhong1( ) |
1 School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China 2 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China 3 Key Laboratory of Particle Physics and Particle Irradiation, Ministry of Education, Institute of Frontier and Interdisciplinary Science,Shandong University, Qingdao, Qingdao 266237, China |
引用本文:
梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
Jinjie LIANG,
Ning GAO,
Yuhong LI.
Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. Acta Metall Sin, 2020, 56(9): 1286-1294.
[1] |
Rana M A. Swelling and structure of radiation induced near-surface damage in CR-39 and its chemical etching [J]. Rad. Meas., 2012, 47: 50
|
[2] |
Ascheron C, Schindler A, Flagmeyer R, et al. A comparative study of swelling, strain and radiation damage of high-energy proton-bombarded GaAs, GaP, InP, Si and Ge single crystals [J]. Nucl. Instrum. Methods Phys. Res., 1989, 36B: 163
|
[3] |
Ascheron C, Schindler A, Flagmeyer R, et al. Swelling, strain, and radiation damage of He+ implanted GaP [J]. Phys. Status Solidi, 1986, 96A: 555
|
[4] |
Mikkelson R C, Miller J W, Holland R E, et al. Inhibition of radiation blistering in tin bombarded by protons and alpha particles [J]. J. Appl. Phys., 1973, 44: 935
|
[5] |
Kohyama A, Hishinuma A, Gelles D S, et al. Low-activation ferritic and martensitic steels for fusion application [J]. J. Nucl. Mater., 1996, 233-237: 138
|
[6] |
Jung P. Radiation effects in structural materials of spallation targets [J]. J. Nucl. Mater., 2002, 301: 15
|
[7] |
Beyerlein I J, Caro A, Demkowicz M J, et al. Radiation damage tolerant nanomaterials [J]. Mater. Today, 2013, 16: 443
doi: 10.1016/j.mattod.2013.10.019
|
[8] |
Litwa P, Kurpaska L, Varin R A, et al. The effect of He+ irradiation on hardness and elastic modulus of Fe-Cr-40 wt.% TiB2 composite rod designed for neutron absorbing [J]. J. Alloys Compd., 2017, 711: 111
doi: 10.1016/j.jallcom.2017.03.350
|
[9] |
Wei Y P, Liu P P, Zhu Y M, et al. Evaluation of irradiation hardening and microstructure evolution under the synergistic interaction of He and subsequent Fe ions irradiation in CLAM steel [J]. J. Alloys Compd., 2016, 676: 481
doi: 10.1016/j.jallcom.2016.03.167
|
[10] |
Masters B C. Dislocation loops in irradiated iron [J]. Philos. Mag., 1965, 11A: 881
|
[11] |
Yao Z, Hernández-Mayoral M, Jenkins M L, et al. Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 1: Damage evolution in thin-foils at lower doses [J]. Philos. Mag., 2008, 88: 2851
doi: 10.1080/14786430802380469
|
[12] |
Dudarev S L, Bullough R, Derlet P M. Effect of the α-γ phase transition on the stability of dislocation loops in bcc iron [J]. Phys. Rev. Lett., 2008, 100: 135503
doi: 10.1103/PhysRevLett.100.135503
pmid: 18517966
|
[13] |
Hernández-Mayoral M, Yao Z, Jenkins M L, et al. Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 2: Damage evolution in thin-foils at higher doses [J]. Philos. Mag., 2008, 88: 2881
doi: 10.1080/14786430802380477
|
[14] |
Jenkins M L, Yao Z, Hernández-Mayoral M, et al. Dynamic observations of heavy-ion damage in Fe and Fe-Cr alloys [J]. J. Nucl. Mater., 2009, 389: 197
doi: 10.1016/j.jnucmat.2009.02.003
|
[15] |
Yao Z, Jenkins M L, Hernández-Mayoral M, et al. The temperature dependence of heavy-ion damage in iron: A microstructural transition at elevated temperatures [J]. Philos. Mag., 2010, 90: 4623
doi: 10.1080/14786430903430981
|
[16] |
Prokhodtseva A, Décamps B, Schäublin R. Comparison between bulk and thin foil ion irradiation of ultra high purity Fe [J]. J. Nucl. Mater., 2013, 442(1-3): S786
doi: 10.1016/j.jnucmat.2013.04.032
|
[17] |
Arakawa K, Hatanaka M, Kuramoto E, et al. Changes in the Burgers vector of perfect dislocation loops without contact with the external dislocations [J]. Phys. Rev. Lett., 2006, 96: 125506
pmid: 16605927
|
[18] |
Liang J J, Gao N, Li Y H. Surface effect on <100> interstitial dislocation loop in iron [J]. Acta Phys. Sin., 2020, 69: 036101
|
[18] |
(梁晋洁, 高 宁, 李玉红. 表面效应对铁<100>间隙型位错环的影响 [J]. 物理学报, 2020, 69: 036101)
|
[19] |
Huang Y N, Wan F R, Jiao Z J. The type identification of dislocation loops by TEM and the loop formation in pure Fe implanted with H+ [J]. Acta Phys. Sin., 2011, 60: 036802
|
[19] |
(黄依娜, 万发荣, 焦治杰. 利用透射电镜衬度像变化判定位错环类型及注氢纯铁中形成的位错环分析 [J]. 物理学报, 2011, 60: 036802)
doi: 10.7498/aps.60.036802
|
[20] |
Jiang S N, Wan F R, Long Y, et al. Effects of helium and deuterium on irradiation damage in pure iron [J]. Acta Phys. Sin., 2013, 62: 166801
|
[20] |
(姜少宁, 万发荣, 龙 毅等. 氦、氘对纯铁辐照缺陷的影响 [J]. 物理学报, 2013, 62: 166801)
|
[21] |
Du Y F, Cui L J, Wan F R. Characterization of dislocation loops in hydrogen ion-implanted Fe-Cr alloy annealed at different temperatures [J]. Chin. J. Eng., 2019, 41: 1016
|
[21] |
(杜玉峰, 崔丽娟, 万发荣. 室温注氢Fe-Cr合金在不同温度退火后位错环的表征 [J]. 工程科学学报, 2019, 41: 1016)
|
[22] |
Cui L J, Gao J, Du Y F, et al. Characterization of dislocation loops in hydrogen-ion irradiated vanadium [J]. Acta Phys. Sin., 2016, 65: 066102
|
[22] |
(崔丽娟, 高 进, 杜玉峰等. 氢离子辐照纯钒中形成的位错环 [J]. 物理学报, 2016, 65: 066102)
|
[23] |
Deng P, Sun C, Peng Q J, et al. Review of irradiation assisted stress corrosion cracking of core structural materials [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 479
|
[23] |
(邓 平, 孙 晨, 彭群家等. 堆芯结构材料辐照促进应力腐蚀开裂研究现状 [J]. 中国腐蚀与防护学报, 2015, 35: 479)
|
[24] |
Gurrutxaga-Lerma B. Static and dynamic multipolar field expansions of dislocations and cracks in solids [J]. Int. J. Eng. Sci., 2018, 128: 165
|
[25] |
Gupta J, Hure J, Tanguy B, et al. Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel: Heavy ions vs protons [J]. J. Nucl. Mater., 2018, 501: 45
|
[26] |
deCelis B, Argon A S, Yip S. Molecular dynamics simulation of crack tip processes in alpha-iron and copper [J]. J. Appl. Phys., 1983, 54: 4864
|
[27] |
Dong J, Chen X D, Fan Z C, et al. A new fatigue-creep life prediction methodology [J]. Acta Metall. Sin., 2008, 44: 1167
|
[27] |
(董 杰, 陈学东, 范志超等. 基于微裂纹扩展的疲劳蠕变寿命预测方法 [J]. 金属学报, 2008, 44: 1167)
|
[28] |
Zhao F X, Zhang Y J, Zhang S, et al. Fatigue crack deflection and formation of microcracks in porosity area of ZG42CrMo [J]. Acta Metall. Sin., 1996, 32: 1056
|
[28] |
(赵芳欣, 张瑛洁, 张 松等. ZG42CrMo缩松区疲劳裂纹的偏析和微裂纹的形成 [J]. 金属学报, 1996, 32: 1056)
|
[29] |
Xu Y B, Bai Y L, Shen L T, et al. Formation and development of shear deformation localization in low carbon steel [J]. Acta Metall. Sin., 1995, 31: A485
|
[29] |
(徐永波, 白以龙, 沈乐天等. 钢中剪切变形局部化的形成与发展 [J]. 金属学报, 1995, 31: A485)
|
[30] |
Chen Q Z, Chu W Y, Qiao L J, et al. TEM in situ observation of brittle cracking of hydrogen charged 310 stainless steel under tension [J]. Acta Metall. Sin., 1994, 30: 248
|
[30] |
(陈奇志, 褚武扬, 乔利杰等. 氢致脆断的TEM原位拉伸观察 [J]. 金属学报, 1994, 30: 248)
|
[31] |
Ackland G J, Mendelev M I, Srolovitz D J, et al. Development of an interatomic potential for phosphorus impurities in α-iron [J]. J. Phys.: Condens. Matter, 2004, 16: S2629
|
[32] |
Mendelev M I, Han S, Srolovitz D J, et al. Development of new interatomic potentials appropriate for crystalline and liquid iron [J]. Philos. Mag., 2003, 83: 3977
doi: 10.1080/14786430310001613264
|
[33] |
Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
|
[34] |
Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data [J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 085001
|
[35] |
Ohr S M, Saka H, Zhu Y, et al. HVEM observation of dislocation-free zones at crack tips in iron single crystals [J]. Philos. Mag., 1988, 57A: 677
|
[36] |
Fikar J, Gröger R. Interactions of prismatic dislocation loops with free surfaces in thin foils of body-centered cubic iron [J]. Acta Mater., 2015, 99: 392
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|