Please wait a minute...
金属学报  2020, Vol. 56 Issue (9): 1286-1294    DOI: 10.11900/0412.1961.2020.00021
  本期目录 | 过刊浏览 |
体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟
梁晋洁1,2, 高宁2,3, 李玉红1()
1 兰州大学核科学与技术学院 兰州 730000
2 中国科学院近代物理研究所 兰州 730000
3 山东大学(青岛)前沿交叉科学青岛研究院粒子物理和粒子辐照教育部重点实验室 青岛 266237
Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method
LIANG Jinjie1,2, GAO Ning2,3, LI Yuhong1()
1 School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
2 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
3 Key Laboratory of Particle Physics and Particle Irradiation, Ministry of Education, Institute of Frontier and Interdisciplinary Science,Shandong University, Qingdao, Qingdao 266237, China
引用本文:

梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
Jinjie LIANG, Ning GAO, Yuhong LI. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. Acta Metall Sin, 2020, 56(9): 1286-1294.

全文: PDF(1244 KB)   HTML
摘要: 

采用分子动力学方法,在原子尺度详细研究了bcc结构Fe中间隙型位错环与微裂纹之间的相互作用过程。模拟结果表明,二者之间的相对距离、裂纹开裂斜率、位错环尺寸以及是否存在自由表面,都对二者的相互作用过程及最终形成的微观结构具有重要的影响。在不同条件下,辐照形成的间隙型位错环与微裂纹的相互作用会形成复杂的辐照缺陷结构、位错环被微裂纹吸收,或者造成裂纹尖端凹凸不平,这些均会对微裂纹的开裂及扩展产生影响,研究结果为理解辐照过程提供一种可能的解释。

关键词 辐照损伤微裂纹位错环分子动力学模拟    
Abstract

In fission or fusion nuclear reactors, the interaction between the high energy particles (e.g. neutrons) and atoms would result in the radiation damages in materials, affecting the performance of materials and lifetime of reactors. The radiation hardening, embrittlement, swelling, creep, fatigue and so on are all related with the radiation damages in materials. Therefore, it is necessary to understand the underlying physics for developing the radiation resistant materials in future. Until now, the displacement cascade process has been studied for decades through computer simulation method. The other properties listed above have also been focused by different groups. However, in addition to these properties, it is also important to understand the degradation of mechanical properties induced by the supersaturated point defects and their clusters, especially the contribution from the interaction between dislocations and radiation defects. Under irradiation, in addition to the self-interstitial dislocation loops formed by the clustering of the self-interstitial atoms, the micro-crack can also be formed in bulk and near the surface of the materials, related with the gas bubble, grain boundary and blister, which would seriously influence the application of materials used in nuclear power plants. Under irradiation, in addition to the normal crack expansion under the effect of stress, these cracks would be key factors to irradiation assistant stress corrosion crack (IASCC) phenomena, which have been studied for decades. In previous studies, although the properties of self-interstitial dislocation loops and micro-crack have been studied independently, the interaction between them under the condition of irradiation has not been fully studied. In this work, the detailed interactions between self-interstitial dislocation loop and micro-crack in bcc iron have been studied at atomic scale with molecular dynamics (MD) simulation method. The results indicate that the relative position between them, the slope of micro-crack, the size of loop and existence of free surface, would all affect the interaction between loop and micro-crack and the related finally micro-structure after the interaction. Under different conditions, the interactions either induce the formation of micro-scale complex radiation damage structure, or the absorption of dislocation by micro-crack, resulting in the rugged crack tips, which would affect the growth and expansion of micro-crack, the degradation of mechanical properties of materials under irradiation. Furthermore, the results can also compare with the formation of dislocation and dislocation loop free zone near the crack tip observed experimentally, providing new understanding to these phenomena. Therefore, all these results provide new possible understandings of radiation damages.

Key wordsradiation damage    micro-crack    dislocation loop    molecular dynamics simulation
收稿日期: 2020-01-16     
ZTFLH:  O469  
基金资助:国家磁约束核聚变能发展研究专项项目(2018YFE0308101);国家自然科学基金项目(11675230);国家自然科学基金项目(11775102);中国科学院青年创新促进会项目(2016366)
作者简介: 梁晋洁,女,1979年生,博士生
图1  位错环与微裂纹相互作用模型示意图Color online
图2  位错环与裂纹尖端的水平距离(d)为1.5 nm、裂纹开裂斜率(k)为0.05、位错环半径(R)为1.5 nm时位错环与微裂纹相互作用的分子动力学演化过程Color online(a) results after the conjugate gradient method relaxation;(b~e) molecular dynamics simulation results at 300 K under 0 Pa pressure with time up to 6×10-12 s, 9.9×10-12 s,1.7×10-11 s and 2.1×10-11 s, respectively
图3  d=3.2 nm、k=0.05、R=1.5 nm时位错环与微裂纹相互作用的分子动力学演化过程Color online(a) state when the loop and micro-crack start to contact with each other for further reaction;(b) equilibrium state between <010> dislocation and micro-crack after full relaxation
图4  d=4.5 nm、k=0.05、R=1.5 nm时位错环与微裂纹相互作用的分子动力学演化过程Color online
图5  d=1.5 nm、R=1.5 nm、k=0.10时位错环与微裂纹相互作用的分子动力学演化过程Color online(a) formation of <100> and 1/2<111> dislocation network at the tip of micro-crack after the initial relaxation;(b) state of dislocations which end on the surface of the micro-crack after directly reacting with the micro-crack tip;(c) final state with one dislocation segment located at the tip of micro-crack after the loop has been fully absorbed by micro-crack
图6  d=1.5 nm、R=1.5 nm、k=0.15时位错环与微裂纹相互作用的分子动力学演化过程Color online(a) initial state when the loop and micro-crack start to contact with each other for further reaction;(b) formation of dislocation network after the formation of <100> and 1/2<111> segments;(c) state of 1/2<111>dislocation which ends on the surface of micro-crack after the initial relaxation and <100> dislocation located at the tip of micro-crack;(d) final rugged tip after the dislocation loop has been absorbed by micro-crack
图7  d=1.5 nm、R=1.5 nm、k≥0.20时位错环与微裂纹相互作用的分子动力学结果演化过程Color online(a) formation of <100> and 1/2<111> segments which both end on the surface of micro-crack;(b) final rugged tip after the dislocation loop has been absorbed by micro-crack
图8  d=3.2 nm、R=1.5 nm、k=0.10时位错环与微裂纹相互反应过程中,位错环与微裂纹表现为相互排斥导致位错环远离微裂纹的演化过程Color online
kR=1.5 nmR=2.0 nmR=3.0 nm
Inside of bulkFree surfaceInside of bulkFree surfaceInside of bulkFree surface
0.0511.711.411.412.314.724.3
0.1025.216.5Unabsorbed16.2Unabsorbed21.6
0.1512.612.615.914.7Unabsorbed18.9
0.2010.59.917.715.0Unabsorbed15.6
0.258.17.510.510.514.417.7
表1  d=15 nm时不同R和k下,有无自由表面位错环被完全吸收所用的模拟时间
[1] Rana M A. Swelling and structure of radiation induced near-surface damage in CR-39 and its chemical etching [J]. Rad. Meas., 2012, 47: 50
[2] Ascheron C, Schindler A, Flagmeyer R, et al. A comparative study of swelling, strain and radiation damage of high-energy proton-bombarded GaAs, GaP, InP, Si and Ge single crystals [J]. Nucl. Instrum. Methods Phys. Res., 1989, 36B: 163
[3] Ascheron C, Schindler A, Flagmeyer R, et al. Swelling, strain, and radiation damage of He+ implanted GaP [J]. Phys. Status Solidi, 1986, 96A: 555
[4] Mikkelson R C, Miller J W, Holland R E, et al. Inhibition of radiation blistering in tin bombarded by protons and alpha particles [J]. J. Appl. Phys., 1973, 44: 935
[5] Kohyama A, Hishinuma A, Gelles D S, et al. Low-activation ferritic and martensitic steels for fusion application [J]. J. Nucl. Mater., 1996, 233-237: 138
[6] Jung P. Radiation effects in structural materials of spallation targets [J]. J. Nucl. Mater., 2002, 301: 15
[7] Beyerlein I J, Caro A, Demkowicz M J, et al. Radiation damage tolerant nanomaterials [J]. Mater. Today, 2013, 16: 443
doi: 10.1016/j.mattod.2013.10.019
[8] Litwa P, Kurpaska L, Varin R A, et al. The effect of He+ irradiation on hardness and elastic modulus of Fe-Cr-40 wt.% TiB2 composite rod designed for neutron absorbing [J]. J. Alloys Compd., 2017, 711: 111
doi: 10.1016/j.jallcom.2017.03.350
[9] Wei Y P, Liu P P, Zhu Y M, et al. Evaluation of irradiation hardening and microstructure evolution under the synergistic interaction of He and subsequent Fe ions irradiation in CLAM steel [J]. J. Alloys Compd., 2016, 676: 481
doi: 10.1016/j.jallcom.2016.03.167
[10] Masters B C. Dislocation loops in irradiated iron [J]. Philos. Mag., 1965, 11A: 881
[11] Yao Z, Hernández-Mayoral M, Jenkins M L, et al. Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 1: Damage evolution in thin-foils at lower doses [J]. Philos. Mag., 2008, 88: 2851
doi: 10.1080/14786430802380469
[12] Dudarev S L, Bullough R, Derlet P M. Effect of the α-γ phase transition on the stability of dislocation loops in bcc iron [J]. Phys. Rev. Lett., 2008, 100: 135503
doi: 10.1103/PhysRevLett.100.135503 pmid: 18517966
[13] Hernández-Mayoral M, Yao Z, Jenkins M L, et al. Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 2: Damage evolution in thin-foils at higher doses [J]. Philos. Mag., 2008, 88: 2881
doi: 10.1080/14786430802380477
[14] Jenkins M L, Yao Z, Hernández-Mayoral M, et al. Dynamic observations of heavy-ion damage in Fe and Fe-Cr alloys [J]. J. Nucl. Mater., 2009, 389: 197
doi: 10.1016/j.jnucmat.2009.02.003
[15] Yao Z, Jenkins M L, Hernández-Mayoral M, et al. The temperature dependence of heavy-ion damage in iron: A microstructural transition at elevated temperatures [J]. Philos. Mag., 2010, 90: 4623
doi: 10.1080/14786430903430981
[16] Prokhodtseva A, Décamps B, Schäublin R. Comparison between bulk and thin foil ion irradiation of ultra high purity Fe [J]. J. Nucl. Mater., 2013, 442(1-3): S786
doi: 10.1016/j.jnucmat.2013.04.032
[17] Arakawa K, Hatanaka M, Kuramoto E, et al. Changes in the Burgers vector of perfect dislocation loops without contact with the external dislocations [J]. Phys. Rev. Lett., 2006, 96: 125506
pmid: 16605927
[18] Liang J J, Gao N, Li Y H. Surface effect on <100> interstitial dislocation loop in iron [J]. Acta Phys. Sin., 2020, 69: 036101
[18] (梁晋洁, 高 宁, 李玉红. 表面效应对铁<100>间隙型位错环的影响 [J]. 物理学报, 2020, 69: 036101)
[19] Huang Y N, Wan F R, Jiao Z J. The type identification of dislocation loops by TEM and the loop formation in pure Fe implanted with H+ [J]. Acta Phys. Sin., 2011, 60: 036802
[19] (黄依娜, 万发荣, 焦治杰. 利用透射电镜衬度像变化判定位错环类型及注氢纯铁中形成的位错环分析 [J]. 物理学报, 2011, 60: 036802)
doi: 10.7498/aps.60.036802
[20] Jiang S N, Wan F R, Long Y, et al. Effects of helium and deuterium on irradiation damage in pure iron [J]. Acta Phys. Sin., 2013, 62: 166801
[20] (姜少宁, 万发荣, 龙 毅等. 氦、氘对纯铁辐照缺陷的影响 [J]. 物理学报, 2013, 62: 166801)
[21] Du Y F, Cui L J, Wan F R. Characterization of dislocation loops in hydrogen ion-implanted Fe-Cr alloy annealed at different temperatures [J]. Chin. J. Eng., 2019, 41: 1016
[21] (杜玉峰, 崔丽娟, 万发荣. 室温注氢Fe-Cr合金在不同温度退火后位错环的表征 [J]. 工程科学学报, 2019, 41: 1016)
[22] Cui L J, Gao J, Du Y F, et al. Characterization of dislocation loops in hydrogen-ion irradiated vanadium [J]. Acta Phys. Sin., 2016, 65: 066102
[22] (崔丽娟, 高 进, 杜玉峰等. 氢离子辐照纯钒中形成的位错环 [J]. 物理学报, 2016, 65: 066102)
[23] Deng P, Sun C, Peng Q J, et al. Review of irradiation assisted stress corrosion cracking of core structural materials [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 479
[23] (邓 平, 孙 晨, 彭群家等. 堆芯结构材料辐照促进应力腐蚀开裂研究现状 [J]. 中国腐蚀与防护学报, 2015, 35: 479)
[24] Gurrutxaga-Lerma B. Static and dynamic multipolar field expansions of dislocations and cracks in solids [J]. Int. J. Eng. Sci., 2018, 128: 165
[25] Gupta J, Hure J, Tanguy B, et al. Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel: Heavy ions vs protons [J]. J. Nucl. Mater., 2018, 501: 45
[26] deCelis B, Argon A S, Yip S. Molecular dynamics simulation of crack tip processes in alpha-iron and copper [J]. J. Appl. Phys., 1983, 54: 4864
[27] Dong J, Chen X D, Fan Z C, et al. A new fatigue-creep life prediction methodology [J]. Acta Metall. Sin., 2008, 44: 1167
[27] (董 杰, 陈学东, 范志超等. 基于微裂纹扩展的疲劳蠕变寿命预测方法 [J]. 金属学报, 2008, 44: 1167)
[28] Zhao F X, Zhang Y J, Zhang S, et al. Fatigue crack deflection and formation of microcracks in porosity area of ZG42CrMo [J]. Acta Metall. Sin., 1996, 32: 1056
[28] (赵芳欣, 张瑛洁, 张 松等. ZG42CrMo缩松区疲劳裂纹的偏析和微裂纹的形成 [J]. 金属学报, 1996, 32: 1056)
[29] Xu Y B, Bai Y L, Shen L T, et al. Formation and development of shear deformation localization in low carbon steel [J]. Acta Metall. Sin., 1995, 31: A485
[29] (徐永波, 白以龙, 沈乐天等. 钢中剪切变形局部化的形成与发展 [J]. 金属学报, 1995, 31: A485)
[30] Chen Q Z, Chu W Y, Qiao L J, et al. TEM in situ observation of brittle cracking of hydrogen charged 310 stainless steel under tension [J]. Acta Metall. Sin., 1994, 30: 248
[30] (陈奇志, 褚武扬, 乔利杰等. 氢致脆断的TEM原位拉伸观察 [J]. 金属学报, 1994, 30: 248)
[31] Ackland G J, Mendelev M I, Srolovitz D J, et al. Development of an interatomic potential for phosphorus impurities in α-iron [J]. J. Phys.: Condens. Matter, 2004, 16: S2629
[32] Mendelev M I, Han S, Srolovitz D J, et al. Development of new interatomic potentials appropriate for crystalline and liquid iron [J]. Philos. Mag., 2003, 83: 3977
doi: 10.1080/14786430310001613264
[33] Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
[34] Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data [J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 085001
[35] Ohr S M, Saka H, Zhu Y, et al. HVEM observation of dislocation-free zones at crack tips in iron single crystals [J]. Philos. Mag., 1988, 57A: 677
[36] Fikar J, Gröger R. Interactions of prismatic dislocation loops with free surfaces in thin foils of body-centered cubic iron [J]. Acta Mater., 2015, 99: 392
[1] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[2] 刘悦, 汤鹏正, 杨昆明, 沈一鸣, 吴中光, 范同祥. 抗辐照损伤金属基纳米结构材料界面设计及其响应行为的研究进展[J]. 金属学报, 2021, 57(2): 150-170.
[3] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[4] 吴玉程. 核聚变堆用W及其合金辐照损伤行为研究进展[J]. 金属学报, 2019, 55(8): 939-950.
[5] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[6] 王晋, 张跃飞, 马晋遥, 李吉学, 张泽. Inconel 740H合金原位高温拉伸微裂纹萌生扩展研究[J]. 金属学报, 2017, 53(12): 1627-1635.
[7] 邓平, 彭群家, 韩恩厚, 柯伟, 孙晨, 夏海鸿, 焦治杰. 国产核用不锈钢辐照损伤研究[J]. 金属学报, 2017, 53(12): 1588-1602.
[8] 梁力, 马明旺, 谈效华, 向伟, 王远, 程焰林. 含缺陷金属Ti力学性能的模拟研究[J]. 金属学报, 2015, 51(1): 107-113.
[9] 朱春雷, 李胜, 李海昭, 张继. 750 ℃热暴露对定向层片组织铸造TiAl合金室温拉伸塑性的影响[J]. 金属学报, 2014, 50(12): 1478-1484.
[10] 万强茂 束国刚 王荣山 丁辉 彭啸 张琪. A508-3钢质子辐照条件下微结构演变研究[J]. 金属学报, 2012, 48(8): 929-934.
[11] 莫云飞 刘让苏 梁永超 郑乃超 周丽丽 田泽安 彭平. ZnxAl100-x合金快凝过程中微结构演变特性的分子动力学模拟[J]. 金属学报, 2012, 48(8): 907-914.
[12] 坚增运,李娜,常芳娥,方雯,赵志伟,董广志,介万奇. Cu熔体中原子团簇在凝固过程中的演变规律分子动力学模拟[J]. 金属学报, 2012, 48(6): 703-708.
[13] 黄远 孔德月 何芳 王玉林 刘文西. 辐照损伤合金化制备Mo/Ag层状复合材料[J]. 金属学报, 2012, 48(10): 1253-1259.
[14] 吕铮. 核反应堆压力容器的辐照脆化与延寿评估[J]. 金属学报, 2011, 47(7): 777-783.
[15] 贺新福 杨鹏 杨文. Fe-Cu合金基体损伤的分子动力学模拟研究[J]. 金属学报, 2011, 47(7): 954-957.