Please wait a minute...
金属学报  2021, Vol. 57 Issue (2): 224-236    DOI: 10.11900/0412.1961.2020.00218
  研究论文 本期目录 | 过刊浏览 |
18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为
倪珂, 杨银辉(), 曹建春, 王刘行, 刘泽辉, 钱昊
昆明理工大学 材料科学与工程学院 昆明 650093
Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain
NI Ke, YANG Yinhui(), CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
引用本文:

倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
Ke NI, Yinhui YANG, Jianchun CAO, Liuhang WANG, Zehui LIU, Hao QIAN. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. Acta Metall Sin, 2021, 57(2): 224-236.

全文: PDF(6879 KB)   HTML
摘要: 

在1123~1423 K、0.1~10 s-1条件下对18.7Cr-1.0Ni-5.8Mn-0.2N节Ni型双相不锈钢进行70%大变形量热压缩研究。利用OM、SEM和EBSD分析热变形组织。结果表明,铁素体动态再结晶(DRX)主要发生在1123 K较低变形温度,随应变速率增大,晶粒细化程度增加,晶粒不均匀程度减小。应变速率对铁素体DRX影响较大,而奥氏体DRX对变形温度更加敏感。在1223 K、10 s-1条件下,铁素体相发生了以小角度晶界(LAGB)向大角度晶界(HAGB)转变的连续动态再结晶(CDRX),而在1323 K、0.1 s-1条件下,奥氏体相以不连续动态再结晶(DDRX)为主。低应变速率条件下升高温度易诱发DDRX,而在高应变速率条件下易发生CDRX。在高温低应变条件下,奥氏体相晶粒取向主要为(001)和(111)再结晶织构,而铁素体相在(001)和(111)织构之间存在竞争关系。拟合获得临界应力(应变)并确定了其与峰值应力(应变)的关系。随着应变增加,热加工失稳区缩小,且稳定区逐渐向高温高应变速率方向移动,1323~1423 K、0.01~6.05 s-1的热参数条件最适合热加工。

关键词 双相不锈钢热变形动态再结晶晶界热加工图    
Abstract

It is difficult to form the precipitated phase of duplex stainless steel (DSS) with low nickel content, and a low Cr content of 18.7% (mass fraction) during hot working. However, the stability of the austenite phase changes by substituting Mn for Ni, which can increase the difference between the softening mechanisms of the two phases under high temperature and deformation conditions. Under a temperature and strain rate of 1123-1423 K and 0.1-10 s-1, respectively, the large thermal compression deformation behavior (70%) of 18.7Cr-1.0Ni-5.8Mn-0.2N DSS was investigated. The thermal deformation microstructures were analyzed by OM, SEM, and EBSD. The results show that the dynamic recrystallization (DRX) of the ferrite phase mainly occurred at a lower deformation temperature of 1123 K, and that the degree of grain refinement increased, and the degree of grain inhomogeneity decreased with an increase in strain rate. The strain rate was observed to have a large impact on the ferrite phase DRX, while the austenite phase DRX was more sensitive to deformation temperature. The ferrite phase underwent continuous dynamic recrystallization (CDRX) with the transition from low-angle to high-angle grain boundaries under deformation at 1223 K and 10 s-1, while the austenite phase was dominated by discontinuous dynamic recrystallization (DDRX) deformed at 1323 K and 0.1 s-1. DDRX can be easily induced by increasing the temperature at a low strain rate, while CDRX can be induced at a higher strain rate. The crystal orientation of the austenite phase is mainly characterized by the recrystallization texture of the (001) and (111) planes at higher temperatures and lower strain rates. In the ferrite phase, there is a competitive relationship between the recrystallization texture of the (001) and (111) planes. The critical stress (strain) was obtained by data fitting and its relationship with the peak stress (strain) was determined. As the strain increased, the flow instability domain of hot compression decreased, and the stability zone gradually moved toward higher temperature and strain rate. Furthermore, the optimum hot working conditions, 1323-1423 K and 0.01-6.05 s-1, were obtained.

Key wordsduplex stainless steel    hot deformation    dynamic recrystallization    grain boundary    processing map
收稿日期: 2020-06-23     
ZTFLH:  TG142  
基金资助:国家自然科学基金项目(51461024)
作者简介: 倪 珂,女,1997年生,硕士生
图1  热压缩实验工艺曲线
图2  双相不锈钢试样在1123~1423 K、0.01~10 s-1变形时的真应力-真应变曲线(a) ε˙=0.01 s-1 (b) ε˙=0.1 s-1 (c) ε˙=1 s-1 (d) ε˙=10 s-1
图3  双相不锈钢试样在不同条件变形时及固溶态的OM像(a) 1123 K, 0.01 s-1 (b) 1223 K, 0.01 s-1 (c) 1323 K, 0.01 s-1(d) 1123 K, 0.1 s-1 (e) 1223 K, 0.1 s-1 (f) 1323 K, 0.1 s-1(g) 1123 K, 1 s-1 (h) 1223 K, 1 s-1 (i) 1323 K, 1 s-1(j) 1123 K, 10 s-1 (k) 1223 K, 10 s-1 (l) 1323 K, 10 s-1(m) as-solution treated
图4  双相不锈钢试样在1123和1223 K变形时的SEM像(a) 1123 K, 0.01 s-1 (b) 1223 K, 0.01 s-1 (c) 1123 K, 0.1 s-1 (d) 1223 K, 0.1 s-1(e) 1123 K, 1 s-1 (f) 1223 K, 1 s-1 (g) 1123 K, 10 s-1 (h) 1223 K, 10 s-1
图5  1123 K变形时双相不锈钢试样中铁素体平均晶粒尺寸与应变速率的关系
图7  两相及两相之和中HAGB数量随着应变速率和温度的变化(a) 1223 K, 0.01-10 s-1(b) 0.1 s-1, 1123-1423 K
图6  双相不锈钢试样在1223 K、0.01~10 s-1和0.1 s-1、1123~1423 K变形条件下的两相分布晶界图(a) 1223 K, 0.01 s-1 (b) 1223 K, 0.1 s-1 (c) 1223 K, 1 s-1 (d) 1223 K, 10 s-1(e) 1123 K, 0.1 s-1 (f) 1323 K, 0.1 s-1 (g) 1423 K, 0.1 s-1 (h) 1223 K, 0.01 s-1 (Phase maps with two colors)
图8  双相不锈钢试样在1223 K、0.01~10 s-1和0.1 s-1、1123~1423 K变形条件下的组成相的EBSD晶粒取向图(a) 1223 K, 0.01 s-1 (b) 1223 K, 0.1 s-1 (c) 1223 K, 1 s-1 (d) 1223 K, 10 s-1(e) 1123 K, 0.1 s-1 (f) 1323 K, 0.1 s-1 (g) 1423 K, 0.1 s-1
图9  双相不锈钢试样在0.1 s-1变形条件下的反极图(a) austenite phase (b) ferrite phase
图10  双相不锈钢试样在10 s-1、1323 K和0.01 s-1、1123~1423 K变形时加工硬化率与应力之间的关系
图11  不同应变速率下临界应力(σc)、临界应变(εc)与温度的关系
图12  双相不锈钢试样σc-σp和εc-εp的关系
图13  双相不锈钢试样在1123~1423K、0.01~10 s-1变形时的3D-能量耗散图和流变失稳图,以及真应变为1.2条件下的热加工图
1 Yang Y H, Qian H, Su Y S. Effect of Mn addition on deformation behaviour of 23% Cr low nickel duplex stainless steel [J]. Mater. Charact., 2018, 145: 606
2 Gao F, Liu Z Y, Wang G D. Hot deformation behavior of high-purified 17% Cr ferritic stainless steel [J]. J. Northeastern Univ. (Nat. Sci.), 2011, 32: 1406
2 高 飞, 刘振宇, 王国栋. 高纯Cr17铁素体不锈钢的热变形行为 [J]. 东北大学学报(自然科学版), 2011, 32: 1406
3 Momeni A, Kazemi S, Ebrahimi G, et al. Dynamic recrystallization and precipitation in high manganese austenitic stainless steel during hot compression [J]. Int. J. Min. Metall. Mater, 2014, 21: 36
4 Gourdet S, Montheillet F. An experimental study of the recrystallization mechanism during hot deformation of aluminium [J]. Mater. Sci. Eng., 2000, A283: 274
5 McQueen H J, Blum W. Dynamic recovery: Sufficient mechanism in the hot deformation of Al (<99.99) [J]. Mater. Sci. Eng., 2000, A290: 95
6 Eghbali B, Abdollah-Zadeh A, Beladi H, et al. Characterization on ferrite microstructure evolution during large strain warm torsion testing of plain low carbon steel [J]. Mater. Sci. Eng., 2006, A435: 499
7 Eghbali B, Abdollah-Zadeh A, Hodgson P D. Dynamic softening of ferrite during large strain warm deformation of a plain-carbon steel [J]. Mater. Sci. Eng., 2007, A462: 259
8 Eghbali B. Microstructural characterization of a warm-deformed microalloyed steel [J]. Mater. Charact., 2008, 59: 473
9 Abdollah-Zadeh A, Eghbali B. Mechanism of ferrite grain refinement during warm deformation of a low carbon Nb-microalloyed steel [J]. Mater. Sci. Eng., 2007, A457: 219
10 An F H, Sha Y H, Zuo L. Microstructural evolution of Fe-3%Si alloy during hot deformation [J]. J. Funct. Mater., 2010, 41: 1948
10 安丰辉, 沙玉辉, 左 良. Fe-3%Si合金热变形过程中的组织演变 [J]. 功能材料, 2010, 41: 1948
11 Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization: A review [J] Mater. Sci. Eng., 1997, A238: 219
12 Dehghan-Manshadi A, Hodgson P D. Effect of δ-ferrite co-existence on hot deformation and recrystallization of austenite [J] J. Mater. Sci., 2008, 43: 6272
13 Fan G W, Liu J, Han P D, et al. Hot ductility and microstructure in casted 2205 duplex stainless steels [J]. Mater. Sci. Eng., 2009, A515: 108
14 Cizek P, Wynne B P. A mechanism of ferrite softening in a duplex stainless steel deformed in hot torsion [J]. Mater. Sci. Eng., 1997, A230: 88
15 Fang Y L, Liu Z Y, Zhang W N, et al. Microstructure evolution of lean duplex stainless steel 2101 during hot deformation [J]. Acta Metall. Sin., 2010, 46: 641
15 方轶琉, 刘振宇, 张维娜等. 节约型双相不锈钢2101高温变形过程中微观组织演化 [J]. 金属学报, 2010, 46: 641
16 Haghdadi N, Martin D, Hodgson P. Physically-based constitutive modelling of hot deformation behavior in a LDX 2101 duplex stainless steel [J]. Mater. Des., 2016, 106: 420
17 Estrin Y, Mecking H. A unified phenomenological description of work hardening and creep based on one-parameter models [J]. Acta Metall., 1984, 32: 57
18 Yan F H, Li S K, Wang M J, et al. Flow stress behavior of TB6 titanium alloy during hot compression deformation at elevated temperature [J]. Chin. J. Nonferrous Met., 2010, 20: 478
18 闫飞昊, 李士凯, 王美娇等. TB6合金热压缩流变应力行为 [J]. 中国有色金属学报, 2010, 20: 478
19 Yamagata H, Ohuchida Y, Saito N, et al. Dynamic recrystallization and dynamic recovery of 99.99 mass% aluminum single crystal having [112] orientation [J]. J. Mater. Sci. Lett., 2001, 20: 1947
20 Zhang M M. Influence of hot-deformation parameters on ferrite grain refinement of Cu-P-Cr-Ni-Mo dual-phase weathering steel [D]. Qinhuangdao: Yanshan University, 2015
20 张萌萌. 热变形参数对Cu-P-Cr-Ni-Mo双相耐候钢铁素体晶粒细化的影响 [D]. 秦皇岛: 燕山大学, 2015
21 Belyakov A, Sakai T, Miura H, et al. Strain-induced submicrocrystalline grains developed in austenitic stainless steel under severe warm deformation [J]. Philos. Mag. Lett., 2000, 80: 711
22 Chen F, Cui Z S, Chen S J. Recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel during hot deformation. Part I: Dynamic recrystallization [J]. Mater. Sci. Eng., 2011, A528: 5073
23 Abedi H R, Hanzaki A Z, Liu Z, et al. Continuous dynamic recrystallization in low density steel [J]. Mater. Des., 2017, 114: 55
24 Gutierrez I, Castro F R, Urcola J J, et al. Static recrystallization kinetics of commercial purity aluminium after hot deformation within the steady state regime [J]. Mater. Sci. Eng., 1988, A102: 77
25 Vandermeer R A, Jensen D J. Recrystallization in hot vs cold deformed commercial aluminum: A microstructure path comparison [J]. Acta Mater., 2003, 51: 3005
26 Mejía I, Bedolla-Jacuinde A, Maldonado C, et al. Determination of the critical conditions for the initiation of dynamic recrystallization in boron microalloyed steels [J]. Mater. Sci. Eng., 2011, A528: 4133
27 Chen M S, Lin Y C, Ma X S. The kinetics of dynamic recrystallization of 42CrMo steel [J]. Mater. Sci. Eng., 2012, A556: 260
28 Deng Y H, Yang Y H, Cao J C, et al. Research on dynamic recrystallization behavior of 23Cr-2.2Ni-6.3Mn-0.26N low nickel type duplex stainless steel [J]. Acta Metall. Sin., 2019, 55: 445
28 邓亚辉, 杨银辉, 曹建春等. 23Cr-2.2Ni-6.3Mn-0.26N节Ni型双相不锈钢动态再结晶行为研究 [J]. 金属学报, 2019, 55: 445
29 Chen L, Zhang Y J, Li F, et al. Modeling of dynamic recrystallization behavior of 21Cr-11Ni-N-RE lean austenitic heat-resistant steel during hot deformation [J]. Mater. Sci. Eng., 2016, A663: 119
30 Wang Y M, Hamza A V, Ma E. Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni [J]. Acta Mater., 2006, 54: 2715
31 Zhang C, Zhang L W, Shen W F, et al. Study on constitutive modeling and processing maps for hot deformation of medium carbon Cr-Ni-Mo alloyed steel [J]. Mater. Des., 2016, 90: 804
32 Chen L, Si J Y, Liu S H, et al. Hot deformation behavior and hot processing map of extruded FGH4096 superalloy [J]. Mater. Rev., 2019, 33: 2047
32 陈 龙, 司家勇, 刘松浩等. 挤压态FGH4096合金的热变形行为及热加工图 [J]. 材料导报, 2019, 33: 2047
33 Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 [J]. Metall. Trans., 1984, 15: 1883
34 Han Y, Zou D N, Chen Z Y, et al. Investigation on hot deformation behavior of 00Cr23Ni4N duplex stainless steel under medium-high strain rates [J]. Mater. Charact., 2011, 62: 198
35 Shi X Z, Du S W, Chen S M. Processing properties analysis of medium carbon steel based on hot processing map [J]. J. Iron Steel Res., 2019, 31: 31
35 师先哲, 杜诗文, 陈双梅. 基于热加工图的中碳钢加工性能分析 [J]. 钢铁研究学报, 2019, 31: 31
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[5] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[6] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[7] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[8] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[9] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[10] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[11] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[12] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[13] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[14] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[15] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.