Please wait a minute...
金属学报  2023, Vol. 59 Issue (8): 1065-1074    DOI: 10.11900/0412.1961.2023.00077
  研究论文 本期目录 | 过刊浏览 |
偏析干预下体心立方金属再结晶织构竞争
常松涛1, 张芳1, 沙玉辉1, 左良1,2()
1东北大学 材料各向异性与织构教育部重点实验室 沈阳 110819
2中国科学院金属研究所 沈阳 110016
Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals
CHANG Songtao1, ZHANG Fang1, SHA Yuhui1, ZUO Liang1,2()
1Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
2Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
Songtao CHANG, Fang ZHANG, Yuhui SHA, Liang ZUO. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. Acta Metall Sin, 2023, 59(8): 1065-1074.

全文: PDF(2459 KB)   HTML
摘要: 

采用实验和模拟相结合的方法研究了含偏析元素Sb的体心立方Fe-3%Si合金再结晶织构间的竞争。结果表明,偏析元素通过抑制γ (<111>//ND,ND为轧面法向)再结晶晶粒向α (<110>//RD,RD为轧制方向)等低储能形变晶粒的入侵,削弱γ再结晶织构组分、强化α等再结晶织构组分,形变织构和临界入侵半径是影响偏析效应的主要因素。构建了基于形核与长大动力学的偏析干预下再结晶织构竞争关系模型,模拟了γ再结晶晶粒向α形变晶粒入侵行为对临界入侵半径和形变织构的依赖性及其动力学过程。指出偏析元素可以通过延长入侵孕育期并降低入侵速率来抑制γ再结晶晶粒消耗α形变晶粒,抑制效果随临界入侵半径和γ形变织构含量的提高先增强后减弱。

关键词 再结晶织构晶界偏析体心立方金属Fe-3%Si合金    
Abstract

Recrystallization texture is determined by the competition among various texture components during nucleation and grain growth. The stored energy and orientation gradient depend on the grain orientation in the deformed microstructure. Texture components, nucleating at positions with high stored energy and a sharp orientation gradient have kinetic advantages, can consume the nucleation sites and potential growth space of recrystallized grains in adjacent deformed grains. Segregation elements can hinder nucleation and growth of recrystallization grains by reducing grain boundary mobility, and thus prevent texture components with kinetic advantages from invading adjacent deformed grains. It is valuable to provide a basis for precise recrystallization texture design and control by investigating the competitive relations among recrystallization texture components under the intervention of segregation elements. The recrystallization texture competition in a body-centered cubic Fe-3%Si alloy containing Sb was studied through experiment and simulation. It was found that the segregation element can weaken the γ (<111>//ND, ND—normal direction) and strengthen the α (<110>//RD, RD—rolling direction), as well as other recrystallization texture components with low stored energy, by inhibiting the invasion of γ-recrystallized grains into adjacent deformed grains. The two dominant factors for segregation effects are deformation texture and critical invasion radius. A quantitative model, based on nucleation and growth kinetics, was proposed to explore the effect of critical invasion radius and deformation texture on recrystallization texture competition mediated by segregation elements. It was found that segregation elements can prolong the invasion incubation period and reduce the invasion rate to inhibit the consumption of α-deformed grains by γ-recrystallized grains. The inhibition effect initially strengthened and then weakened with the increasing γ deformation texture.

Key wordsrecrystallization texture    grain boundary segregation    body-centered cubic metal    Fe-3%Si alloy
收稿日期: 2023-02-27     
ZTFLH:  TG142.77  
基金资助:国家自然科学基金项目(51931002)
通讯作者: 左 良,lzuo@mail.neu.edu.cn,主要从事金属材料织构控制理论与技术研究
Corresponding author: ZUO Liang, professor, Tel:(024)83691560, E-mail: lzuo@mail.neu.edu.cn
作者简介: 常松涛,男,1992年生,博士生
图1  无Sb和含Sb的Fe-3%Si冷轧板亚表层和中心层取向分布函数(ODF)的φ2 = 0°和45° (φ2为Euler角)截面图
图2  无Sb和含Sb的Fe-3%Si再结晶板亚表层和中心层ODF的φ2 = 0°和45°截面图
图3  添加Sb后Fe-3%Si再结晶板亚表层和中心层ODF变化的φ2 = 0°和45°截面图
图4  无Sb和含Sb的Fe-3%Si冷轧板EBSD取向成像图和几何必需位错(GND)密度成像图
图5  无Sb和含Sb的Fe-3%Si冷轧板部分再结晶和完全再结晶时的EBSD取向成像图
图6  无Sb和含Sb的Fe-3%Si冷轧板再结晶早期和中期主要织构组分EBSD取向成像图
图7  γ再结晶晶粒入侵α形变晶粒过程的示意图
ParameterValueUnitRef.
Temperature, T1123K
Shear modulus, G87.88 - 0.02467TGPa[30]
Boltzmann's constant, kb1.38 × 10-23J·K-1
Burgers vector modulus, b0.25 × 10-9m[30]
Mobility of free grain boundary, Mgbfree9×10-8exp(-1.99×10-19kbT)m4·J-1·s-1[31]
Mobility of free sub-grain boundary, Msubfree0.2Mgbfreem4·J-1·s-1[23]
Grain boundary width, δgb1 × 10-9m[26]
Sub-grain boundary width, δsubδgbmThis work
Number of atoms per unit volume, NV8.45 × 1028m-3
Binding energy of Sb to sub-grain boundary, Esubseg-0.43eV[32,33]
Binding energy of Sb to grain boundary, Egbseg-0.67eV[34]
Sb bulk diffusion coefficient, DB1.3×10-5exp(-3.37×10-19kbT)m2·s-1[35]
Sb cross grain boundary diffusion coefficient, DgbC2DBm2·s-1[26]
Sb cross sub-grain boundary diffusion coefficient, DsubCDgbCm2·s-1This work
表1  Fe-3%Si合金再结晶行为模拟用参数[23,26,30~35]
图8  入侵α形变晶粒的γ再结晶晶粒分数随临界入侵半径(Rc)的变化
图9  入侵α形变晶粒的γ再结晶晶粒体积分数随γ形变织构分数的变化
图10  α形变晶粒晶界区域再结晶动力学
1 Wauthier-Monnin A, Chauveau T, Castelnau O, et al. The evolution with strain of the stored energy in different texture components of cold-rolled IF steel revealed by high resolution X-ray diffraction [J]. Mater. Charact., 2015, 104: 31
doi: 10.1016/j.matchar.2015.04.005
2 Hawezy D, Birosca S. Disparity in recrystallization of α- & γ-fibers and its impact on cube texture formation in non-oriented electrical steel [J]. Acta Mater., 2021, 216: 117141
doi: 10.1016/j.actamat.2021.117141
3 Sanjari M, He Y L, Hilinski E J, et al. Texture evolution during skew cold rolling and annealing of a non-oriented electrical steel containing 0.9wt% silicon [J]. J. Mater. Sci., 2017, 52: 3281
doi: 10.1007/s10853-016-0616-y
4 Sebald R, Gottstein G. Modeling of recrystallization textures: Interaction of nucleation and growth [J]. Acta Mater., 2002, 50: 1587
doi: 10.1016/S1359-6454(02)00020-4
5 Fu Q, Sha Y H, Zhang F, et al. Correlative effect of critical parameters for η recrystallization texture development in rolled Fe81Ga19 sheet: Modeling and experiment [J]. Acta Mater., 2019, 167: 167
doi: 10.1016/j.actamat.2019.01.043
6 Sánchez-Araiza M, Godet S, Jacques P J, et al. Texture evolution during the recrystallization of a warm-rolled low-carbon steel [J]. Acta Mater., 2006, 54: 3085
doi: 10.1016/j.actamat.2006.02.050
7 Okuda K, Rollett A D. Monte Carlo simulation of elongated recrystallized grains in steels [J]. Comput. Mater. Sci., 2005, 34: 264
doi: 10.1016/j.commatsci.2005.01.013
8 Shimanaka H, Irie T, Matsumura K, et al. A new non-oriented Si-steel with texture of {100}<ovw> [J]. J. Magn. Magn. Mater., 1980, 19: 63
doi: 10.1016/0304-8853(80)90554-5
9 Vodopivec F, Marinšek F, Grešovnik F, et al. Effect of antimony of energy losses in non-oriented 1.8 Si, 0.3 Al electrical sheets [J]. J. Magn. Magn. Mater., 1991, 97: 281
doi: 10.1016/0304-8853(91)90192-D
10 Lee S, De Cooman B C. Effect of phosphorus on the magnetic losses of non-oriented 2%Si steel [J]. ISIJ Int., 2012, 52: 1162
doi: 10.2355/isijinternational.52.1162
11 Godec M, Jenko M, Mast R, et al. Texture measurements on electrical steels alloyed with tin [J]. Vacuum, 2001, 61: 151
doi: 10.1016/S0042-207X(00)00472-3
12 Chang S K, Huang W Y. Texture effect on magnetic properties by alloying specific elements in non-grain oriented silicon steels [J]. ISIJ Int., 2005, 45: 918
doi: 10.2355/isijinternational.45.918
13 Mavrikakis N, Saikaly W, Calvillo P R, et al. How Sn addition influences texture development in single-phase Fe alloys: Correlation between local chemical information, microstructure and recrystallisation [J]. Mater. Charact., 2022, 190: 112072
doi: 10.1016/j.matchar.2022.112072
14 Duggan B J, Tse Y Y. Crystal growth in deformed metals by an impingement and spheroidisation process [J]. Acta Mater., 2004, 52: 387
doi: 10.1016/j.actamat.2003.09.021
15 Bailey J E, Hirsch P B. The recrystallization process in some polycrystalline metals [J]. Proc. R. Soc., 1962, 267A: 11
16 Cram D G, Fang X Y, Zurob H S, et al. The effect of solute on discontinuous dynamic recrystallization [J]. Acta Mater., 2012, 60: 6390
doi: 10.1016/j.actamat.2012.08.021
17 Buken H, Kozeschnik E. Modeling static recrystallization in Al-Mg alloys [J]. Metall. Mater. Trans., 2021, 52A: 544
18 Cahn J W. The impurity-drag effect in grain boundary motion [J]. Acta Metall., 1962, 10: 789
doi: 10.1016/0001-6160(62)90092-5
19 Crumbach M, Goerdeler M, Gottstein G. Modelling of recrystallisation textures in aluminium alloys: I. Model set-up and integration [J]. Acta Mater., 2006, 54: 3275
doi: 10.1016/j.actamat.2006.03.017
20 Raabe D. A texture-component Avrami model for predicting recrystallization textures, kinetics and grain size [J]. Modell. Simul. Mater. Sci. Eng., 2007, 15: 39
doi: 10.1088/0965-0393/15/2/004
21 Raabe D. Multiscale recrystallization models for the prediction of crystallographic textures with respect to process simulation [J]. J. Strain Anal. Eng. Des., 2007, 42: 253
doi: 10.1243/03093247JSA219
22 Hutchinson B. Deformation microstructures and textures in steels [J]. Philos. Trans. R. Soc., 1999, 357: 1471
23 Zurob H S, Bréchet Y, Dunlop J. Quantitative criterion for recrystallization nucleation in single-phase alloys: Prediction of critical strains and incubation times [J]. Acta Mater., 2006, 54: 3983
doi: 10.1016/j.actamat.2006.04.028
24 Witcomb M J. Dislocation cell structure relation d = Kρ -1/2: The stacking fault energy dependence of K [J]. Phys. Status Solidi, 1974, 22A: 299
25 Huang X, Jensen D J, Hansen N. Effect of grain orientation on deformation structure and recrystallization behaviour of tensile strained copper [A]. 4th International Conference on Recrystallization and Related Phenomena [C]. Tsukuba: JIM, 1999: 161
26 Buken H, Kozeschnik E. A model for static recrystallization with simultaneous precipitation and solute drag [J]. Metall. Mater. Trans., 2017, 48A: 2812
27 Després A, Mithieux J D, Sinclair C W. Modelling the relationship between deformed microstructures and static recrystallization textures: Application to ferritic stainless steels [J]. Acta Mater., 2021, 219: 117226
doi: 10.1016/j.actamat.2021.117226
28 Montaño-Zuñiga I M, Sepulveda-Cervantes G, Lopez-Hirata V M, et al. Numerical simulation of recrystallization in BCC metals [J]. Comput. Mater. Sci., 2010, 49: 512
doi: 10.1016/j.commatsci.2010.05.042
29 Ratanaphan S, Olmsted D L, Bulatov V V, et al. Grain boundary energies in body-centered cubic metals [J]. Acta Mater., 2015, 88: 346
doi: 10.1016/j.actamat.2015.01.069
30 Yong Q L. The Second Phase in Steel Materials [M]. Beijing: Metallurgical Industry Press, 2006: 65
30 雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 65
31 Lee H H, Jung J, Yoon J I, et al. Modelling the evolution of recrystallization texture for a non-grain oriented electrical steel [J]. Comput. Mater. Sci., 2018, 149: 57
doi: 10.1016/j.commatsci.2018.03.013
32 Mavrikakis N, Detlefs C, Cook P K, et al. A multi-scale study of the interaction of Sn solutes with dislocations during static recovery in α-Fe [J]. Acta Mater., 2019, 174: 92
doi: 10.1016/j.actamat.2019.05.021
33 Faulkner R G, Song S H, Flewitt P E J. Determination of impurity-point defect binding energies in alloys [J]. Mater. Sci. Technol., 1996, 12: 904
doi: 10.1179/mst.1996.12.11.904
34 Lejček P. Grain boundary segregation of antimony in α-iron: Prediction and experimental data [J]. J. Alloys Compd., 2004, 378: 85
doi: 10.1016/j.jallcom.2003.10.076
35 Pérez A R A, Torres D N, Dyment F. Sb diffusion in α-Fe [J]. Appl. Phys., 2005, 81: 787
[1] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[2] 张艳,郭明星,邢辉,王斐,汪小锋,张济山,庄林忠. 不同热加工工艺对Al-Mg-Si-Cu合金板材力学性能和组织的影响*[J]. 金属学报, 2015, 51(12): 1425-1434.
[3] 赵骧; 何长树; 徐俊; 左良 . 电场退火对IF深冲钢板塑性应变比(r值)的影响[J]. 金属学报, 2006, 42(8): 827-829 .
[4] 胡卓超; 赵骧; 左良 . 电场退火对08Al深冲钢板再结晶织构的影响[J]. 金属学报, 2003, 39(2): 213-216 .
[5] 陈志永; 张新明; 周卓平 . {110}<111>, {112}<111>和{123}<111>多滑移的屈服应力状态[J]. 金属学报, 2003, 39(1): 17-21 .
[6] 王轶农; 武保林 . LY12铝合金的再结晶织构、晶界特征分布及抗腐蚀性能[J]. 金属学报, 2000, 36(10): 1085-1088 .
[7] 杨平;O.Enler. Al—Mn合金中粒子促进形核及初期再结晶织构 Ⅱ.粒子与其它形核位置的交互作用及初期再结晶织构[J]. 金属学报, 1998, 34(8): 793-801.
[8] 杨平;O.Engler. Al-Mn合金中粒子促进形核及初期再结晶织构 Ⅰ.粒子周围的形变区及粒子促进形核[J]. 金属学报, 1998, 34(8): 785-792.
[9] 宋仁国;张宝金;曾梅光. 7175铝合金的应力腐蚀及晶界Mg偏析的作用[J]. 金属学报, 1997, 33(6): 595-601.
[10] 赵骧. 高纯超低碳深冲钢板的固溶碳含量对再结晶γ织构的影响[J]. 金属学报, 1995, 31(18): 262-265.
[11] 刘燕声;赵骧;梁志德. 工业纯铜的异步冷轧及再结晶织构研究[J]. 金属学报, 1990, 26(3): 126-130.
[12] 张玉梅;姜文辉. 立方取向50%Ni-Fe合金的二次再结晶织构的测定[J]. 金属学报, 1988, 24(3): 217-220.
[13] 胡本芙;高桥平七郎;竹山太郎. 电子辐照Fe-Cr-Ni奥氏体合金的空洞体胀与诱起晶界偏析的研究[J]. 金属学报, 1988, 24(3): 180-186.