|
|
偏析干预下体心立方金属再结晶织构竞争 |
常松涛1, 张芳1, 沙玉辉1, 左良1,2( ) |
1东北大学 材料各向异性与织构教育部重点实验室 沈阳 110819 2中国科学院金属研究所 沈阳 110016 |
|
Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals |
CHANG Songtao1, ZHANG Fang1, SHA Yuhui1, ZUO Liang1,2( ) |
1Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China 2Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
Songtao CHANG,
Fang ZHANG,
Yuhui SHA,
Liang ZUO.
Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. Acta Metall Sin, 2023, 59(8): 1065-1074.
1 |
Wauthier-Monnin A, Chauveau T, Castelnau O, et al. The evolution with strain of the stored energy in different texture components of cold-rolled IF steel revealed by high resolution X-ray diffraction [J]. Mater. Charact., 2015, 104: 31
doi: 10.1016/j.matchar.2015.04.005
|
2 |
Hawezy D, Birosca S. Disparity in recrystallization of α- & γ-fibers and its impact on cube texture formation in non-oriented electrical steel [J]. Acta Mater., 2021, 216: 117141
doi: 10.1016/j.actamat.2021.117141
|
3 |
Sanjari M, He Y L, Hilinski E J, et al. Texture evolution during skew cold rolling and annealing of a non-oriented electrical steel containing 0.9wt% silicon [J]. J. Mater. Sci., 2017, 52: 3281
doi: 10.1007/s10853-016-0616-y
|
4 |
Sebald R, Gottstein G. Modeling of recrystallization textures: Interaction of nucleation and growth [J]. Acta Mater., 2002, 50: 1587
doi: 10.1016/S1359-6454(02)00020-4
|
5 |
Fu Q, Sha Y H, Zhang F, et al. Correlative effect of critical parameters for η recrystallization texture development in rolled Fe81Ga19 sheet: Modeling and experiment [J]. Acta Mater., 2019, 167: 167
doi: 10.1016/j.actamat.2019.01.043
|
6 |
Sánchez-Araiza M, Godet S, Jacques P J, et al. Texture evolution during the recrystallization of a warm-rolled low-carbon steel [J]. Acta Mater., 2006, 54: 3085
doi: 10.1016/j.actamat.2006.02.050
|
7 |
Okuda K, Rollett A D. Monte Carlo simulation of elongated recrystallized grains in steels [J]. Comput. Mater. Sci., 2005, 34: 264
doi: 10.1016/j.commatsci.2005.01.013
|
8 |
Shimanaka H, Irie T, Matsumura K, et al. A new non-oriented Si-steel with texture of {100}<ovw> [J]. J. Magn. Magn. Mater., 1980, 19: 63
doi: 10.1016/0304-8853(80)90554-5
|
9 |
Vodopivec F, Marinšek F, Grešovnik F, et al. Effect of antimony of energy losses in non-oriented 1.8 Si, 0.3 Al electrical sheets [J]. J. Magn. Magn. Mater., 1991, 97: 281
doi: 10.1016/0304-8853(91)90192-D
|
10 |
Lee S, De Cooman B C. Effect of phosphorus on the magnetic losses of non-oriented 2%Si steel [J]. ISIJ Int., 2012, 52: 1162
doi: 10.2355/isijinternational.52.1162
|
11 |
Godec M, Jenko M, Mast R, et al. Texture measurements on electrical steels alloyed with tin [J]. Vacuum, 2001, 61: 151
doi: 10.1016/S0042-207X(00)00472-3
|
12 |
Chang S K, Huang W Y. Texture effect on magnetic properties by alloying specific elements in non-grain oriented silicon steels [J]. ISIJ Int., 2005, 45: 918
doi: 10.2355/isijinternational.45.918
|
13 |
Mavrikakis N, Saikaly W, Calvillo P R, et al. How Sn addition influences texture development in single-phase Fe alloys: Correlation between local chemical information, microstructure and recrystallisation [J]. Mater. Charact., 2022, 190: 112072
doi: 10.1016/j.matchar.2022.112072
|
14 |
Duggan B J, Tse Y Y. Crystal growth in deformed metals by an impingement and spheroidisation process [J]. Acta Mater., 2004, 52: 387
doi: 10.1016/j.actamat.2003.09.021
|
15 |
Bailey J E, Hirsch P B. The recrystallization process in some polycrystalline metals [J]. Proc. R. Soc., 1962, 267A: 11
|
16 |
Cram D G, Fang X Y, Zurob H S, et al. The effect of solute on discontinuous dynamic recrystallization [J]. Acta Mater., 2012, 60: 6390
doi: 10.1016/j.actamat.2012.08.021
|
17 |
Buken H, Kozeschnik E. Modeling static recrystallization in Al-Mg alloys [J]. Metall. Mater. Trans., 2021, 52A: 544
|
18 |
Cahn J W. The impurity-drag effect in grain boundary motion [J]. Acta Metall., 1962, 10: 789
doi: 10.1016/0001-6160(62)90092-5
|
19 |
Crumbach M, Goerdeler M, Gottstein G. Modelling of recrystallisation textures in aluminium alloys: I. Model set-up and integration [J]. Acta Mater., 2006, 54: 3275
doi: 10.1016/j.actamat.2006.03.017
|
20 |
Raabe D. A texture-component Avrami model for predicting recrystallization textures, kinetics and grain size [J]. Modell. Simul. Mater. Sci. Eng., 2007, 15: 39
doi: 10.1088/0965-0393/15/2/004
|
21 |
Raabe D. Multiscale recrystallization models for the prediction of crystallographic textures with respect to process simulation [J]. J. Strain Anal. Eng. Des., 2007, 42: 253
doi: 10.1243/03093247JSA219
|
22 |
Hutchinson B. Deformation microstructures and textures in steels [J]. Philos. Trans. R. Soc., 1999, 357: 1471
|
23 |
Zurob H S, Bréchet Y, Dunlop J. Quantitative criterion for recrystallization nucleation in single-phase alloys: Prediction of critical strains and incubation times [J]. Acta Mater., 2006, 54: 3983
doi: 10.1016/j.actamat.2006.04.028
|
24 |
Witcomb M J. Dislocation cell structure relation d = Kρ -1/2: The stacking fault energy dependence of K [J]. Phys. Status Solidi, 1974, 22A: 299
|
25 |
Huang X, Jensen D J, Hansen N. Effect of grain orientation on deformation structure and recrystallization behaviour of tensile strained copper [A]. 4th International Conference on Recrystallization and Related Phenomena [C]. Tsukuba: JIM, 1999: 161
|
26 |
Buken H, Kozeschnik E. A model for static recrystallization with simultaneous precipitation and solute drag [J]. Metall. Mater. Trans., 2017, 48A: 2812
|
27 |
Després A, Mithieux J D, Sinclair C W. Modelling the relationship between deformed microstructures and static recrystallization textures: Application to ferritic stainless steels [J]. Acta Mater., 2021, 219: 117226
doi: 10.1016/j.actamat.2021.117226
|
28 |
Montaño-Zuñiga I M, Sepulveda-Cervantes G, Lopez-Hirata V M, et al. Numerical simulation of recrystallization in BCC metals [J]. Comput. Mater. Sci., 2010, 49: 512
doi: 10.1016/j.commatsci.2010.05.042
|
29 |
Ratanaphan S, Olmsted D L, Bulatov V V, et al. Grain boundary energies in body-centered cubic metals [J]. Acta Mater., 2015, 88: 346
doi: 10.1016/j.actamat.2015.01.069
|
30 |
Yong Q L. The Second Phase in Steel Materials [M]. Beijing: Metallurgical Industry Press, 2006: 65
|
30 |
雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 65
|
31 |
Lee H H, Jung J, Yoon J I, et al. Modelling the evolution of recrystallization texture for a non-grain oriented electrical steel [J]. Comput. Mater. Sci., 2018, 149: 57
doi: 10.1016/j.commatsci.2018.03.013
|
32 |
Mavrikakis N, Detlefs C, Cook P K, et al. A multi-scale study of the interaction of Sn solutes with dislocations during static recovery in α-Fe [J]. Acta Mater., 2019, 174: 92
doi: 10.1016/j.actamat.2019.05.021
|
33 |
Faulkner R G, Song S H, Flewitt P E J. Determination of impurity-point defect binding energies in alloys [J]. Mater. Sci. Technol., 1996, 12: 904
doi: 10.1179/mst.1996.12.11.904
|
34 |
Lejček P. Grain boundary segregation of antimony in α-iron: Prediction and experimental data [J]. J. Alloys Compd., 2004, 378: 85
doi: 10.1016/j.jallcom.2003.10.076
|
35 |
Pérez A R A, Torres D N, Dyment F. Sb diffusion in α-Fe [J]. Appl. Phys., 2005, 81: 787
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|