|
|
金属材料的晶界塑性变形机制 |
王江伟( ), 陈映彬, 祝祺, 洪哲, 张泽 |
浙江大学 材料科学与工程学院 硅材料国家重点实验室 电子显微镜中心 杭州 310027 |
|
Grain Boundary Dominated Plasticity in Metallic Materials |
WANG Jiangwei( ), CHEN Yingbin, ZHU Qi, HONG Zhe, ZHANG Ze |
Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China |
引用本文:
王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
Jiangwei WANG,
Yingbin CHEN,
Qi ZHU,
Zhe HONG,
Ze ZHANG.
Grain Boundary Dominated Plasticity in Metallic Materials[J]. Acta Metall Sin, 2022, 58(6): 726-745.
1 |
Taylor G I. The mechanism of plastic deformation of crystals. Part I.—Theoretical [J]. Proc. Roy. Soc., 1934, 145A: 362
|
2 |
Taylor G I. The mechanism of plastic deformation of crystals. Part II.—Comparison with observations [J]. Proc. Roy. Soc., 1934, 145A: 388
|
3 |
Hirsch P B, Horne R W, Whelan M J. Direct observations of the arrangement and motion of dislocations in aluminum [J]. Philos. Mag., 1956, 1: 677
doi: 10.1080/14786435608244003
|
4 |
Frank F C. Crystal dislocations—Elementrary concepts and definitions [J]. Philos. Mag., 1951, 42: 809
|
5 |
Bilby B A, Bullough R, Smith E. Continuous distributions of dislocations: A new application of the methods of non-Riemannian geometry [J]. Proc. Roy. Soc., 1955, 231A: 263
|
6 |
Read W T, Shockley W. Dislocation models of crystal grain boundaries [J]. Phys. Rev., 1950, 78: 275
doi: 10.1103/PhysRev.78.275
|
7 |
Han J, Thomas S L, Srolovitz D J. Grain-boundary kinetics: A unified approach [J]. Prog. Mater. Sci., 2018, 98: 386
doi: 10.1016/j.pmatsci.2018.05.004
|
8 |
Pond R C, Bollmann W. The symmetry and interfacial structure of bicrystals [J]. Philos. Trans. Roy. Soc., 1979, 292A: 449
|
9 |
Sutton A P, Vitek V. On the structure of tilt grain boundaries in cubic metals II. Asymmetrical tilt boundaries [J]. Philos. Trans. Roy. Soc., 1983, 309A: 37
|
10 |
Sutton A P, Vitek V. On the structure of tilt grain boundaries in cubic metals I. Symmetrical tilt boundaries [J]. Philos. Trans. Roy. Soc., 1983, 309A: 1
|
11 |
Rittner J D, Seidman D N. <110> symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies [J]. Phys. Rev., 1996, 54B: 6999
|
12 |
Hirth J P, Pond R C. Steps, dislocations and disconnections as interface defects relating to structure and phase transformations [J]. Acta Mater., 1996, 44: 4749
doi: 10.1016/S1359-6454(96)00132-2
|
13 |
Khater H A, Serra A, Pond R C, et al. The disconnection mechanism of coupled migration and shear at grain boundaries [J]. Acta Mater., 2012, 60: 2007
doi: 10.1016/j.actamat.2012.01.001
|
14 |
Pond R C, Hirth J P. Defects at surfaces and interfaces [J]. Solid State Phys., 1994, 47: 287
doi: 10.1134/1.1866408
|
15 |
Hirth J P, Hirth G, Wang J. Disclinations and disconnections in minerals and metals [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 196
doi: 10.1073/pnas.1915140117
|
16 |
Howe J M, Pond R C, Hirth J P. The role of disconnections in phase transformations [J]. Prog. Mater. Sci., 2009, 54: 792
doi: 10.1016/j.pmatsci.2009.04.001
|
17 |
Hirth J P, Wang J, Tomé C N. Disconnections and other defects associated with twin interfaces [J]. Prog. Mater. Sci., 2016, 83: 417
doi: 10.1016/j.pmatsci.2016.07.003
|
18 |
Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci., 2006, 51: 427
doi: 10.1016/j.pmatsci.2005.08.003
|
19 |
Greer J R, De Hosson J T M. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect [J]. Prog. Mater. Sci., 2011, 56: 654
doi: 10.1016/j.pmatsci.2011.01.005
|
20 |
Watanabe T, Tsurekawa S. The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering [J]. Acta Mater., 1999, 47: 4171
doi: 10.1016/S1359-6454(99)00275-X
|
21 |
Okada T, Hisazawa H, Iwasaki A, et al. Grain-boundary sliding and its accommodation at triple junctions in aluminum and copper tricrystals [J]. Mater. Trans., 2019, 60: 86
doi: 10.2320/matertrans.M2018296
|
22 |
Winning M, Rollett A D. Transition between low and high angle grain boundaries [J]. Acta Mater., 2005, 53: 2901
doi: 10.1016/j.actamat.2005.03.005
|
23 |
Winning M, Gottstein G, Shvindlerman L S. Stress induced grain boundary motion [J]. Acta Mater., 2001, 49: 211
doi: 10.1016/S1359-6454(00)00321-9
|
24 |
Molodov D A, Ivanov V A, Gottstein G. Low angle tilt boundary migration coupled to shear deformation [J]. Acta Mater., 2007, 55: 1843
doi: 10.1016/j.actamat.2006.10.045
|
25 |
Molodov D A, Gorkaya T, Gottstein G. Migration of the Σ7 tilt grain boundary in Al under an applied external stress [J]. Scr. Mater., 2011, 65: 990
doi: 10.1016/j.scriptamat.2011.08.030
|
26 |
Legros M, Gianola D S, Hemker K J. In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films [J]. Acta Mater., 2008, 56: 3380
doi: 10.1016/j.actamat.2008.03.032
|
27 |
Wang L H, Teng J, Liu P, et al. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum [J]. Nat. Commun., 2014, 5: 4402
doi: 10.1038/ncomms5402
|
28 |
Zhu Q, Cao G, Wang J W, et al. In situ atomistic observation of disconnection-mediated grain boundary migration [J]. Nat. Commun., 2019, 10: 156
doi: 10.1038/s41467-018-08031-x
pmid: 30635566
|
29 |
Imrich P J, Kirchlechner C, Motz C, et al. Differences in deformation behavior of bicrystalline Cu micropillars containing a twin boundary or a large-angle grain boundary [J]. Acta Mater., 2014, 73: 240
doi: 10.1016/j.actamat.2014.04.022
|
30 |
Mompiou F, Caillard D, Legros M. Grain boundary shear-migration coupling—I. In situ TEM straining experiments in Al polycrystals [J]. Acta Mater., 2009, 57: 2198
doi: 10.1016/j.actamat.2009.01.014
|
31 |
Rajabzadeh A, Legros M, Combe N, et al. Evidence of grain boundary dislocation step motion associated to shear-coupled grain boundary migration [J]. Philos. Mag., 2013, 93: 1299
doi: 10.1080/14786435.2012.760760
|
32 |
Rajabzadeh A, Mompiou F, Lartigue-Korinek S, et al. The role of disconnections in deformation-coupled grain boundary migration [J]. Acta Mater., 2014, 77: 223
doi: 10.1016/j.actamat.2014.05.062
|
33 |
Babcock S E, Balluffi R W. Grain boundary kinetics—I. In situ observations of coupled grain boundary dislocation motion, crystal translation and boundary displacement [J]. Acta Metall., 1989, 37: 2357
doi: 10.1016/0001-6160(89)90033-3
|
34 |
Babcock S E, Balluffi R W. Grain boundary kinetics—II. In situ observations of the role of grain boundary dislocations in high-angle boundary migration [J]. Acta Metall., 1989, 37: 2367
doi: 10.1016/0001-6160(89)90034-5
|
35 |
Jin M, Minor A M, Stach E A, et al. Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature [J]. Acta Mater., 2004, 52: 5381
doi: 10.1016/j.actamat.2004.07.044
|
36 |
Shan Z W, Stach E A, Wiezorek J M K, et al. Grain boundary-mediated plasticity in nanocrystalline nickel [J]. Science, 2004, 305: 654
doi: 10.1126/science.1098741
|
37 |
Rupert T J, Gianola D S, Gan Y, et al. Experimental observations of stress-driven grain boundary migration [J]. Science, 2009, 326: 1686
doi: 10.1126/science.1178226
pmid: 20019286
|
38 |
Caillard D, Mompiou F, Legros M. Grain-boundary shear-migration coupling. II. Geometrical model for general boundaries [J]. Acta Mater., 2009, 57: 2390
doi: 10.1016/j.actamat.2009.01.023
|
39 |
Kheradmand N, Vehoff H, Barnoush A. An insight into the role of the grain boundary in plastic deformation by means of a bicrystalline pillar compression test and atomistic simulation [J]. Acta Mater., 2013, 61: 7454
doi: 10.1016/j.actamat.2013.08.056
|
40 |
Wang L, Zhao F, Zhao F P, et al. Grain boundary orientation effects on deformation of Ta bicrystal nanopillars under high strain-rate compression [J]. J. Appl. Phys., 2014, 115: 053528
|
41 |
Kim Y, Lee S, Jeon J B, et al. Effect of a high angle grain boundary on deformation behavior of Al nanopillars [J]. Scr. Mater., 2015, 107: 5
doi: 10.1016/j.scriptamat.2015.05.005
|
42 |
Li L L, Zhang Z J, Tan J, et al. Stepwise work hardening induced by individual grain boundary in Cu bicrystal micropillars [J]. Sci. Rep., 2015, 5: 15631
doi: 10.1038/srep15631
pmid: 26490543
|
43 |
Kaira C S, Singh S S, Kirubanandham A, et al. Microscale deformation behavior of bicrystal boundaries in pure tin (Sn) using micropillar compression [J]. Acta Mater., 2016, 120: 56
doi: 10.1016/j.actamat.2016.08.030
|
44 |
Gu X W, Loynachan C N, Wu Z X, et al. Size-dependent deformation of nanocrystalline Pt nanopillars [J]. Nano Lett., 2012, 12: 6385
doi: 10.1021/nl3036993
|
45 |
Jang D, Greer J R. Size-induced weakening and grain boundary-assisted deformation in 60 nm grained Ni nanopillars [J]. Scr. Mater., 2011, 64: 77
doi: 10.1016/j.scriptamat.2010.09.010
|
46 |
Merkle K L, Thompson L J. Atomic-scale observation of grain boundary motion [J]. Mater. Lett., 2001, 48: 188
doi: 10.1016/S0167-577X(00)00301-3
|
47 |
Merkle K L, Thompson L J, Phillipp F. High-resolution electron microscopy at a (113) symmetric Thermally activated step motion observed by tilt grain-boundary in aluminium [J]. Philos. Mag. Lett., 2002, 82: 589
doi: 10.1080/0950083021000038074
|
48 |
Merkle K L, Thompson L J, Phillipp F. Collective effects in grain boundary migration [J]. Phys. Rev. Lett., 2002, 88: 225501
doi: 10.1103/PhysRevLett.88.225501
|
49 |
Merkle K L, Thompson L J, Phillipp F. Dynamics of grain boundary motion at the atomic level [J]. MRS Online Proc. Libr., 2004, 819: 61
|
50 |
Merkle K L, Thompson L J, Phillipp F. In-situ HREM studies of grain boundary migration [J]. Interface Sci., 2004, 12: 277
doi: 10.1023/B:INTS.0000028657.72527.5b
|
51 |
Merkle K L, Thompson L J, Phillipp F. High-resolution electron microscopy at a (113) symmetric Thermally activated step motion observed by tilt grain-boundary in aluminium [J]. Philos. Mag. Lett., 2002, 82: 589
doi: 10.1080/0950083021000038074
|
52 |
Radetic T, Ophus C, Olmsted D L, et al. Mechanism and dynamics of shrinking island grains in mazed bicrystal thin films of Au [J]. Acta Mater., 2012, 60: 7051
doi: 10.1016/j.actamat.2012.09.012
|
53 |
Bowers M L, Ophus C, Gautam A, et al. Step coalescence by collective motion at an incommensurate grain boundary [J]. Phys. Rev. Lett., 2016, 116: 106102
doi: 10.1103/PhysRevLett.116.106102
|
54 |
Wang L H, Zhang Y, Zeng Z, et al. Tracking the sliding of grain boundaries at the atomic scale [J]. Science, 2022, 375: 1261
doi: 10.1126/science.abm2612
|
55 |
Wei J K, Feng B, Ishikawa R, et al. Direct imaging of atomistic grain boundary migration [J]. Nat. Mater., 2021, 20: 951
doi: 10.1038/s41563-020-00879-z
|
56 |
Wei C Z, Thomas S L, Han J, et al. A Continuum Multi-Disconnection-Mode model for grain boundary migration [J]. J. Mech. Phys. Solids, 2019, 133: 103731
doi: 10.1016/j.jmps.2019.103731
|
57 |
Zhang L C, Han J, Xiang Y, et al. Equation of motion for a grain boundary [J]. Phys. Rev. Lett., 2017, 119: 246101
doi: 10.1103/PhysRevLett.119.246101
|
58 |
Combe N, Mompiou F, Legros M. Heterogeneous disconnection nucleation mechanisms during grain boundary migration [J]. Phys. Rev. Mater., 2019, 3: 060601
|
59 |
Combe N, Mompiou F, Legros M. Shear-coupled grain-boundary migration dependence on normal strain/stress [J]. Phys. Rev. Mater., 2017, 1: 033605
|
60 |
Guo Y L, Wang J C, Wang Z J, et al. Effects of a disconnection dipole on the shear-coupled grain boundary migration [J]. Comput. Mater. Sci., 2015, 109: 253
doi: 10.1016/j.commatsci.2015.07.037
|
61 |
Zhang L, Lu C, Tieu K, et al. The shear response of copper bicrystals with Σ11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation [J]. Nanoscale, 2015, 7: 7224
doi: 10.1039/C4NR07496C
|
62 |
Wan L, Wang S Q. Shear response of the Σ11, <110>{131} symmetric tilt grain boundary studied by molecular dynamics [J]. Model. Simul. Mater. Sci. Eng., 2009, 17: 45008
doi: 10.1088/0965-0393/17/4/045008
|
63 |
Wan L, Wang S Q. Shear response of the Σ9<110>{221} symmetric tilt grain boundary in fcc metals studied by atomistic simulation methods [J]. Phys. Rev., 2010, 82B: 214112
|
64 |
Combe N, Mompiou F, Legros M. Disconnections kinks and competing modes in shear-coupled grain boundary migration [J]. Phys. Rev., 2016, 93B: 024109
|
65 |
Thomas S L, Wei C Z, Han J, et al. Disconnection description of triple-junction motion [J]. Proc. Natl. Acad. Sci. USA, 2019, 116: 8756
doi: 10.1073/pnas.1820789116
|
66 |
Wei C Z, Zhang L C, Han J, et al. Grain boundary triple junction dynamics: A continuum disconnection model [J]. SIAM J. Appl. Math., 2020, 80: 1101
doi: 10.1137/19M1277722
|
67 |
Cahn J W, Mishin Y, Suzuki A. Coupling grain boundary motion to shear deformation [J]. Acta Mater., 2006, 54: 4953
doi: 10.1016/j.actamat.2006.08.004
|
68 |
Cahn J W, Mishin Y, Suzuki A. Duality of dislocation content of grain boundaries [J]. Philos. Mag., 2006, 86: 3965
doi: 10.1080/14786430500536909
|
69 |
Rae C M F, Smith D A. On the mechanisms of grain boundary migration [J]. Philos. Mag., 1980, 41A: 477
|
70 |
Guillope M, Poirier J P. A model for stress-induced migration of tilt grain boundaries in crystals of NaCl structure [J]. Acta Metall., 1980, 28: 163
doi: 10.1016/0001-6160(80)90065-6
|
71 |
Fukutomi H, Iseki T, Endo T, et al. Sliding behavior of coincidence grain boundaries deviating from ideal symmetric tilt relationship [J]. Acta Metall. Mater., 1991, 39: 1445
doi: 10.1016/0956-7151(91)90229-T
|
72 |
Zhang L C, Han J, Xiang Y, et al. Equation of motion for a grain boundary [J]. Phys. Rev. Lett., 2017, 119: 246101
doi: 10.1103/PhysRevLett.119.246101
|
73 |
Zhou H F, Li X Y, Wang Y, et al. Torsional detwinning domino in nanotwinned one-dimensional nanostructures [J]. Nano Lett., 2015, 15: 6082
doi: 10.1021/acs.nanolett.5b02330
|
74 |
Song J, Wang J, Liu Y. Characterization of the terrace-defect interfaces using in situ straining techniques [J]. J. Mater. Res., 2021, 36: 2674
doi: 10.1557/s43578-021-00121-9
|
75 |
Liebig J P, Mačković M, Spiecker E, et al. Grain boundary mediated plasticity: A blessing for the ductility of metallic thin films? [J]. Acta Mater., 2021, 117079
|
76 |
Yu Y N. Metallic Principle [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2013: 411
|
76 |
余永宁. 金属学原理 [M]. 第 2版, 北京: 冶金工业出版社, 2013: 441
|
77 |
Mara N A, Sergueeva A V, Mara T D, et al. Superplasticity and cooperative grain boundary sliding in nanocrystalline Ni3Al [J]. Mater. Sci. Eng. 2007, A463: 238
|
78 |
Yoshida H, Yokoyama K, Shibata N, et al. High-temperature grain boundary sliding behavior and grain boundary energy in cubic zirconia bicrystals [J]. Acta Mater., 2004, 52: 2349
doi: 10.1016/j.actamat.2004.01.026
|
79 |
Li Q Z, Wang L H, Teng J, et al. In-situ observation of cooperative grain boundary sliding and migration in the nano-twinned nanocrystalline-Au thin-films [J]. Scr. Mater., 2020, 180: 97
doi: 10.1016/j.scriptamat.2020.01.025
|
80 |
Ovid'ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials [J]. Prog. Mater. Sci., 2018, 94: 462
doi: 10.1016/j.pmatsci.2018.02.002
|
81 |
Li Q, Song J, Liu G S, et al. Migration kinetics of twinning disconnections in nanotwinned Cu: An in situ HRTEM deformation study [J]. Scr. Mater., 2021, 194: 113621
doi: 10.1016/j.scriptamat.2020.11.006
|
82 |
Wang Y B, Sui M L, Ma E. In situ observation of twin boundary migration in copper with nanoscale twins during tensile deformation [J]. Philos. Mag. Lett., 2007, 87: 935
doi: 10.1080/09500830701591493
|
83 |
Lee T C, Robertson I M, Birnbaum H K. TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals [J]. Philos. Mag., 1990, 62A: 131
|
84 |
Luster J, Morris M A. Compatibility of deformation in two-phase Ti-Al alloys: Dependence on microstructure and orientation relationships [J]. Metall. Mater. Trans., 1995, 26A: 1745
|
85 |
Kacher J, Robertson I M. Quasi-four-dimensional analysis of dislocation interactions with grain boundaries in 304 stainless steel [J]. Acta Mater., 2012, 60: 6657
doi: 10.1016/j.actamat.2012.08.036
|
86 |
Zhu Q, Zhao S C, Deng C, et al. In situ atomistic observation of grain boundary migration subjected to defect interaction [J]. Acta Mater., 2020, 199: 42
doi: 10.1016/j.actamat.2020.08.021
|
87 |
Kondo S, Mitsuma T, Shibata N, et al. Direct observation of individual dislocation interaction processes with grain boundaries [J]. Sci. Adv., 2016, 2: e1501926
doi: 10.1126/sciadv.1501926
|
88 |
Wu Z X, Zhang Y W, Srolovitz D J. Deformation mechanisms, length scales and optimizing the mechanical properties of nanotwinned metals [J]. Acta Mater., 2011, 59: 6890
doi: 10.1016/j.actamat.2011.07.038
|
89 |
Kacher J, Eftink B P, Cui B, et al. Dislocation interactions with grain boundaries [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18: 227
doi: 10.1016/j.cossms.2014.05.004
|
90 |
Yu K Y, Bufford D, Khatkhatay F, et al. In situ studies of irradiation-induced twin boundary migration in nanotwinned Ag [J]. Scr. Mater., 2013, 69: 385
doi: 10.1016/j.scriptamat.2013.05.024
|
91 |
Lin Q Y, An X H, Liu H W, et al. In-situ high-resolution transmission electron microscopy investigation of grain boundary dislocation activities in a nanocrystalline CrMnFeCoNi high-entropy alloy [J]. J. Alloys Compd., 2017, 709: 802
doi: 10.1016/j.jallcom.2017.03.194
|
92 |
Zhu T, Gao H J. Plastic deformation mechanism in nanotwinned metals: An insight from molecular dynamics and mechanistic modeling [J]. Scr. Mater., 2012, 66: 843
doi: 10.1016/j.scriptamat.2012.01.031
|
93 |
Ke X, Ye J C, Pan Z L, et al. Ideal maximum strengths and defect-induced softening in nanocrystalline-nanotwinned metals [J]. Nat. Mater., 2019, 18: 1207
doi: 10.1038/s41563-019-0484-3
|
94 |
Wang L H, Han X D, Liu P, et al. In situ observation of dislocation behavior in nanometer grains [J]. Phys. Rev. Lett., 2010, 105: 135501
doi: 10.1103/PhysRevLett.105.135501
|
95 |
Wang L H, Zhang Z, Ma E, et al. Transmission electron microscopy observations of dislocation annihilation and storage in nanograins [J]. Appl. Phys. Lett., 2011, 98: 051905
|
96 |
Mompiou F, Caillard D, Legros M, et al. In situ TEM observations of reverse dislocation motion upon unloading in tensile-deformed UFG aluminium [J]. Acta Mater., 2012, 60: 3402
doi: 10.1016/j.actamat.2012.02.049
|
97 |
Colla M S, Amin-Ahmadi B, Idrissi H, et al. Dislocation-mediated relaxation in nanograined columnar palladium films revealed by on-chip time-resolved HRTEM testing [J]. Nat. Commun., 2015, 6: 5922
doi: 10.1038/ncomms6922
pmid: 25557273
|
98 |
Li L L, Zhang Z J, Zhang P, et al. Distinct fatigue cracking modes of grain boundaries with coplanar slip systems [J]. Acta Mater., 2016, 120: 120
doi: 10.1016/j.actamat.2016.06.032
|
99 |
Zhang Z F, Li L L, Zhang Z J, et al. Twin boundary: Controllable interface to fatigue cracking [J]. J. Mater. Sci. Technol., 2017, 33: 603
doi: 10.1016/j.jmst.2017.03.022
|
100 |
Zhang Z F, Wang Z G. Dependence of intergranular fatigue cracking on the interactions of persistent slip bands with grain boundaries [J]. Acta Mater., 2003, 51: 347
doi: 10.1016/S1359-6454(02)00399-3
|
101 |
Zhang Z F, Wang Z G. Grain boundary effects on cyclic deformation and fatigue damage [J]. Prog. Mater. Sci., 2008, 53: 1025
doi: 10.1016/j.pmatsci.2008.06.001
|
102 |
Li L L, Zhang P, Zhang Z J, et al. Strain localization and fatigue cracking behaviors of Cu bicrystal with an inclined twin boundary [J]. Acta Mater., 2014, 73: 167
doi: 10.1016/j.actamat.2014.04.004
|
103 |
Li L L, Zhang Z J, Zhang P, et al. Controllable fatigue cracking mechanisms of copper bicrystals with a coherent twin boundary [J]. Nat. Commun., 2014, 5: 3536
doi: 10.1038/ncomms4536
pmid: 24667520
|
104 |
Zhang Z J, Zhang P, Li L L, et al. Fatigue cracking at twin boundaries: Effects of crystallographic orientation and stacking fault energy [J]. Acta Mater., 2012, 60: 3113
doi: 10.1016/j.actamat.2012.02.016
|
105 |
Li L L, Zhang P, Zhang Z J, et al. Intrinsically higher fatigue cracking resistance of the penetrable and movable incoherent twin boundary [J]. Sci. Rep., 2014, 4: 3744
doi: 10.1038/srep03744
pmid: 24434787
|
106 |
Zhang P, Zhang Z J, Li L L, et al. Twin boundary: Stronger or weaker interface to resist fatigue cracking? [J]. Scr. Mater., 2012, 66: 854
doi: 10.1016/j.scriptamat.2012.01.028
|
107 |
Zhang Z J, Li L L, Zhang P, et al. Fatigue cracking at twin boundary: Effect of dislocation reactions [J]. Appl. Phys. Lett., 2012, 101: 011907
|
108 |
Li L L, Zhang Z J, Zhang P, et al. Higher fatigue cracking resistance of twin boundaries than grain boundaries in Cu bicrystals [J]. Scr. Mater., 2011, 65: 505
doi: 10.1016/j.scriptamat.2011.06.009
|
109 |
Zhang Z F, Wang Z G. Effects of grain boundaries on cyclic deformation behavior of copper bicrystals and columnar crystals [J]. Acta Mater., 1998, 46: 5063
doi: 10.1016/S1359-6454(98)00162-1
|
110 |
Wang A G, An X H, Gu J, et al. Effect of grain size on fatigue cracking at twin boundaries in a CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2020, 39: 1
doi: 10.1016/j.jmst.2019.09.010
|
111 |
Li L L, Zhang Z J, Zhang P, et al. Difference in fatigue cracking behaviors of Cu bicrystals with the same component grains but different twin boundaries [J]. Scr. Mater., 2015, 95: 19
doi: 10.1016/j.scriptamat.2014.09.021
|
112 |
Li L L, Zhang Z J, Zhang P, et al. Shear fatigue cracking of twin boundary and grain boundary without dislocation impingement [J]. Scr. Mater., 2015, 100: 28
doi: 10.1016/j.scriptamat.2014.12.004
|
113 |
Li L L, Zhang Z J, Zhang P, et al. Deformation behaviors of Cu bicrystals with an inclined twin boundary at multiple scales [J]. J. Mater. Sci. Technol., 2017, 33: 698
doi: 10.1016/j.jmst.2016.11.030
|
114 |
Hanlon T, Kwon Y N, Suresh S. Grain size effects on the fatigue response of nanocrystalline metals [J]. Scr. Mater., 2003, 49: 675
doi: 10.1016/S1359-6462(03)00393-2
|
115 |
Cao A J, Wei Y G. Atomistic simulations of crack nucleation and intergranular fracture in bulk nanocrystalline nickel [J]. Phys. Rev., 2007, 76B: 024113
|
116 |
Zhu Q, Huang Q S, Guang C, et al. Metallic nanocrystals with low angle grain boundary for controllable plastic reversibility [J]. Nat. Commun., 2020, 11: 3100
doi: 10.1038/s41467-020-16869-3
pmid: 32555195
|
117 |
Molodov D A, Czubayko U, Gottstein G, et al. On the effect of purity and orientation on grain boundary motion [J]. Acta Mater., 1998, 46: 553
doi: 10.1016/S1359-6454(97)00277-2
|
118 |
Zhu Q, Huang Q S, Zhou H F, et al. Inclination-governed deformation of dislocation-type grain boundaries [J]. J. Mater. Res., 2021, 36: 1306
doi: 10.1557/s43578-021-00191-9
|
119 |
Ciulik J, Taleff E M. Dynamic abnormal grain growth: A new method to produce single crystals [J]. Scr. Mater., 2009, 61: 895
doi: 10.1016/j.scriptamat.2009.07.021
|
120 |
Zhu Q, Zhou H F, Chen Y B, et al. Atomistic dynamics of disconnection-mediated grain boundary plasticity: A case study of gold nanocrystals [J]. J. Mater. Sci. Technol., 2022, 125: 182
doi: 10.1016/j.jmst.2022.02.040
|
121 |
Wang Z J, Li Q J, Li Y, et al. Sliding of coherent twin boundaries [J]. Nat. Commun., 2017, 8: 1108
doi: 10.1038/s41467-017-01234-8
|
122 |
Kim S H, Park J H, Kim H K, et al. Twin boundary sliding in single crystalline Cu and Al nanowires [J]. Acta Mater., 2020, 196: 69
doi: 10.1016/j.actamat.2020.06.028
|
123 |
Zhu Q, Kong L Y, Lu H M, et al. Revealing extreme twin-boundary shear deformability in metallic nanocrystals [J]. Sci. Adv., 2021, 7: eabe4758
doi: 10.1126/sciadv.abe4758
|
124 |
Upmanyu M, Srolovitz D J, Lobkovsky A E, et al. Simultaneous grain boundary migration and grain rotation [J]. Acta Mater., 2006, 54: 1707
doi: 10.1016/j.actamat.2005.11.036
|
125 |
Chen Y B, Huang Q S, Zhu Q, et al. Coordinated grain boundary deformation governed nanograin annihilation in shear cycling [J]. J. Mater. Sci. Technol., 2021, 86: 180
doi: 10.1016/j.jmst.2021.01.032
|
126 |
Basak A, Gupta A. Simultaneous grain boundary motion, grain rotation, and sliding in a tricrystal [J]. Mech. Mater., 2015, 90: 229
doi: 10.1016/j.mechmat.2015.01.012
|
127 |
Wang L H, Teng J, Liu P, et al. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum [J]. Nat. Commun., 2014, 5: 4402
doi: 10.1038/ncomms5402
|
128 |
Li J J, Soh A K, Wu X L. On nanograin rotation by dislocation climb in nanocrystalline materials [J]. Scr. Mater., 2014, 78-79: 5
doi: 10.1016/j.scriptamat.2013.12.021
|
129 |
Murayama M, Howe J M, Hidaka H, et al. Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe [J]. Science, 2002, 295: 2433
pmid: 11923534
|
130 |
Thomas S L, Chen K T, Han J, et al. Reconciling grain growth and shear-coupled grain boundary migration [J]. Nat. Commun., 2017, 8: 1764
doi: 10.1038/s41467-017-01889-3
|
131 |
Upmanyu M, Srolovitz D J, Shvindlerman L S, et al. Molecular dynamics simulation of triple junction migration [J]. Acta Mater., 2002, 50: 1405
doi: 10.1016/S1359-6454(01)00446-3
|
132 |
Chen Y B, Zhao S C, Huang Q S, et al. A geometrical model for grain boundary migration mediated formation of multifold twins [J]. Int. J. Plast., 2022, 148: 103128
doi: 10.1016/j.ijplas.2021.103128
|
133 |
Chen Y B, Huang Q S, Zhao S C, et al. Penta-twin destruction by coordinated twin boundary deformation [J]. Nano Lett., 2021, 21: 8378
doi: 10.1021/acs.nanolett.1c02970
|
134 |
Yu T B, Hansen N, Huang X X. Recovery by triple junction motion in aluminium deformed to ultrahigh strains [J]. Proc. Roy. Soc., 2011, 467A: 3039
|
135 |
Yu T B, Hansen N, Huang X X. Linking recovery and recrystallization through triple junction motion in aluminum cold rolled to a large strain [J]. Acta Mater., 2013, 61: 6577
doi: 10.1016/j.actamat.2013.07.040
|
136 |
Yu T B, Hughes D A. Strong pinning of triple junction migration for robust high strain nanostructures [J]. Philos. Mag., 2019, 99: 869
doi: 10.1080/14786435.2018.1562282
|
137 |
Yu T B, Hughes D A, Hansen N, et al. In situ observation of triple junction motion during recovery of heavily deformed aluminum [J]. Acta Mater., 2015, 86: 269
doi: 10.1016/j.actamat.2014.12.014
|
138 |
Shuai L F, Huang T L, Yu T B, et al. Segregation and precipitation stabilizing an ultrafine lamellar-structured Al-0.3%Cu alloy [J]. Acta Mater., 2021, 206: 116595
doi: 10.1016/j.actamat.2020.116595
|
139 |
Gifkins R C. Grain-boundary sliding and its accommodation during creep and superplasticity [J]. Metall. Trans., 1976, 7A: 1225
|
140 |
Kaibyshev O A, Pshenichniuk A I, Astanin V V. Superplasticity resulting from cooperative grain boundary sliding [J]. Acta Mater., 1998, 46: 4911
doi: 10.1016/S1359-6454(98)00197-9
|
141 |
Van Swygenhoven H, Derlet P M. Grain-boundary sliding in nanocrystalline fcc metals [J]. Phys. Rev., 2001, 64B: 224105
|
142 |
Bobylev S V, Morozov N F, Ovid'ko I A. Cooperative grain boundary sliding and migration process in nanocrystalline solids [J]. Phys. Rev. Lett., 2010, 105: 055504
|
143 |
Ovid'ko I A, Sheinerman A G. Grain boundary sliding, triple junction disclinations and strain hardening in ultrafine-grained and nanocrystalline metals [J]. Int. J. Plast., 2017, 96: 227
doi: 10.1016/j.ijplas.2017.05.005
|
144 |
Hasnaoui A, Van Swygenhoven H, Derlet P M. Cooperative processes during plastic deformation in nanocrystalline fcc metals: A molecular dynamics simulation [J]. Phys. Rev., 2002, 66B: 184112
|
145 |
Li J J, Soh A K. Synergy of grain boundary sliding and shear-coupled migration process in nanocrystalline materials [J]. Acta Mater., 2013, 61: 5449
doi: 10.1016/j.actamat.2013.05.033
|
146 |
Ovid'ko I A, Sheinerman A G, Aifantis E C. Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids [J]. Acta Mater., 2011, 59: 5023
doi: 10.1016/j.actamat.2011.04.056
|
147 |
Yu M, Fang Q H, Feng H, et al. Effect of cooperative grain boundary sliding and migration on dislocation emitting from a semi-elliptical blunt crack tip in nanocrystalline solids [J]. Acta Mech., 2014, 225: 2005
doi: 10.1007/s00707-013-1039-3
|
148 |
Feng H, Fang Q H, Zhang L C, et al. Effect of cooperative grain boundary sliding and migration on emission of dislocations from a crack tip in nanocrystalline materials [J]. Mech. Mater., 2013, 61: 39
doi: 10.1016/j.mechmat.2013.02.006
|
149 |
Zhao Y X, Fang Q H, Liu Y W. Effect of cooperative nanograin boundary sliding and migration on dislocation emission from a blunt nanocrack tip in nanocrystalline materials [J]. Philos. Mag., 2014, 94: 700
doi: 10.1080/14786435.2013.861091
|
150 |
Lejček P. Grain Boundary Segregation in Metals [M]. Berlin, Heidelberg: Springer, 2010: 1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|