Please wait a minute...
金属学报  2022, Vol. 58 Issue (6): 726-745    DOI: 10.11900/0412.1961.2021.00594
  综述 本期目录 | 过刊浏览 |
金属材料的晶界塑性变形机制
王江伟(), 陈映彬, 祝祺, 洪哲, 张泽
浙江大学 材料科学与工程学院 硅材料国家重点实验室 电子显微镜中心 杭州 310027
Grain Boundary Dominated Plasticity in Metallic Materials
WANG Jiangwei(), CHEN Yingbin, ZHU Qi, HONG Zhe, ZHANG Ze
Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
引用本文:

王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
Jiangwei WANG, Yingbin CHEN, Qi ZHU, Zhe HONG, Ze ZHANG. Grain Boundary Dominated Plasticity in Metallic Materials[J]. Acta Metall Sin, 2022, 58(6): 726-745.

全文: PDF(4873 KB)   HTML
摘要: 

晶界是多晶材料中一类重要的面缺陷,在材料的力学和物理化学性能调控中发挥着重要作用。深入理解晶界的塑性变形动力学机制是开展材料晶界工程调控的理论基础。本文从晶界的微观结构和晶界本征缺陷出发,详细总结晶界塑性变形机制的研究进展;在此基础上,围绕晶界阶错形核、扩展、交互作用的动力学机制,深入探讨晶界迁移的原子尺度动力学机制及其在不同因素下的表现形式,阐明不同晶界变形行为之间的关联关系,发展和完善晶界塑性变形理论,为金属材料的晶界工程调控提供理论指导。

关键词 金属材料晶界晶界动力学晶界阶错晶界迁移    
Abstract

Grain boundaries (GBs) are important planar defects in polycrystalline materials, and they are crucial in plastic deformation and recrystallization of materials. A fundamental understanding of GB deformation kinetics is critical for material design using GB engineering. Although GB dominated structural evolutions have been reported to proceed via different modes, the disconnection-based model has recently become a widely acknowledged approach to unify the GB dominated plasticity. In this paper, recent progresses of GB dominated plasticity in metallic materials based on disconnection-mediated GB migration have been reviewed. Disconnection dynamics, including nucleation, propagation and interactions between different disconnections, were found dominating the shear-coupled GB migration. Lateral motion of different GB disconnections contributes to the overall GB migration, during which dynamic interactions prevail. In the three-dimensional network of GBs, GB-defect interaction and triple junctions can further influence the shear-coupled GB migration by providing extra disconnection sources, which readily change the intrinsic disconnection dynamics. These disconnection-based GB kinetics are generally applicable in the migration of GBs with different structures, as well as other modes of GB dominated deformation. Based on the aforementioned, the effects of GB plasticity on mechanical properties and deformation of metallic materials are further discussed. This review provides a unified understanding of disconnection-based GB plasticity, which not only enriches mechanistic understanding of interface plasticity in metallic materials but also holds important implications for GB engineering toward advanced high-performance metallic materials.

Key wordsmetallic material    grain boundary    grain boundary kinetic    grain boundary disconnection    grain boundary migration
收稿日期: 2021-12-23     
ZTFLH:  TG14  
基金资助:国家自然科学基金项目(51771172);国家自然科学基金项目(52071284)
作者简介: 王江伟,男,1984年生,研究员,博士
图1  晶界的宏观几何自由度示意图
图2  晶界模型与阶错几何结构示意图[7,11,15]
图3  晶界变形与金属材料性能之间的关系[19]
图4  晶界变形行为的实验研究[30,31,36,54,55]
图5  fcc金属双晶中Σ11(113)晶界迁移的阶错机制[61,62]
图6  倾转晶界迁移的理论模型[34,38,67,70]
图7  晶界阶错的原子尺度动力学行为[7,28]
图8  晶界与晶格缺陷的交互作用[86,87]
图9  块体金属材料中不同晶界的疲劳开裂模式[98,99]
图10  晶界结构和曲率对晶界塑性变形的影响[116,118]
图11  晶界协调变形机制[65,125,130,131]
1 Taylor G I. The mechanism of plastic deformation of crystals. Part I.—Theoretical [J]. Proc. Roy. Soc., 1934, 145A: 362
2 Taylor G I. The mechanism of plastic deformation of crystals. Part II.—Comparison with observations [J]. Proc. Roy. Soc., 1934, 145A: 388
3 Hirsch P B, Horne R W, Whelan M J. Direct observations of the arrangement and motion of dislocations in aluminum [J]. Philos. Mag., 1956, 1: 677
doi: 10.1080/14786435608244003
4 Frank F C. Crystal dislocations—Elementrary concepts and definitions [J]. Philos. Mag., 1951, 42: 809
5 Bilby B A, Bullough R, Smith E. Continuous distributions of dislocations: A new application of the methods of non-Riemannian geometry [J]. Proc. Roy. Soc., 1955, 231A: 263
6 Read W T, Shockley W. Dislocation models of crystal grain boundaries [J]. Phys. Rev., 1950, 78: 275
doi: 10.1103/PhysRev.78.275
7 Han J, Thomas S L, Srolovitz D J. Grain-boundary kinetics: A unified approach [J]. Prog. Mater. Sci., 2018, 98: 386
doi: 10.1016/j.pmatsci.2018.05.004
8 Pond R C, Bollmann W. The symmetry and interfacial structure of bicrystals [J]. Philos. Trans. Roy. Soc., 1979, 292A: 449
9 Sutton A P, Vitek V. On the structure of tilt grain boundaries in cubic metals II. Asymmetrical tilt boundaries [J]. Philos. Trans. Roy. Soc., 1983, 309A: 37
10 Sutton A P, Vitek V. On the structure of tilt grain boundaries in cubic metals I. Symmetrical tilt boundaries [J]. Philos. Trans. Roy. Soc., 1983, 309A: 1
11 Rittner J D, Seidman D N. <110> symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies [J]. Phys. Rev., 1996, 54B: 6999
12 Hirth J P, Pond R C. Steps, dislocations and disconnections as interface defects relating to structure and phase transformations [J]. Acta Mater., 1996, 44: 4749
doi: 10.1016/S1359-6454(96)00132-2
13 Khater H A, Serra A, Pond R C, et al. The disconnection mechanism of coupled migration and shear at grain boundaries [J]. Acta Mater., 2012, 60: 2007
doi: 10.1016/j.actamat.2012.01.001
14 Pond R C, Hirth J P. Defects at surfaces and interfaces [J]. Solid State Phys., 1994, 47: 287
doi: 10.1134/1.1866408
15 Hirth J P, Hirth G, Wang J. Disclinations and disconnections in minerals and metals [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 196
doi: 10.1073/pnas.1915140117
16 Howe J M, Pond R C, Hirth J P. The role of disconnections in phase transformations [J]. Prog. Mater. Sci., 2009, 54: 792
doi: 10.1016/j.pmatsci.2009.04.001
17 Hirth J P, Wang J, Tomé C N. Disconnections and other defects associated with twin interfaces [J]. Prog. Mater. Sci., 2016, 83: 417
doi: 10.1016/j.pmatsci.2016.07.003
18 Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci., 2006, 51: 427
doi: 10.1016/j.pmatsci.2005.08.003
19 Greer J R, De Hosson J T M. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect [J]. Prog. Mater. Sci., 2011, 56: 654
doi: 10.1016/j.pmatsci.2011.01.005
20 Watanabe T, Tsurekawa S. The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering [J]. Acta Mater., 1999, 47: 4171
doi: 10.1016/S1359-6454(99)00275-X
21 Okada T, Hisazawa H, Iwasaki A, et al. Grain-boundary sliding and its accommodation at triple junctions in aluminum and copper tricrystals [J]. Mater. Trans., 2019, 60: 86
doi: 10.2320/matertrans.M2018296
22 Winning M, Rollett A D. Transition between low and high angle grain boundaries [J]. Acta Mater., 2005, 53: 2901
doi: 10.1016/j.actamat.2005.03.005
23 Winning M, Gottstein G, Shvindlerman L S. Stress induced grain boundary motion [J]. Acta Mater., 2001, 49: 211
doi: 10.1016/S1359-6454(00)00321-9
24 Molodov D A, Ivanov V A, Gottstein G. Low angle tilt boundary migration coupled to shear deformation [J]. Acta Mater., 2007, 55: 1843
doi: 10.1016/j.actamat.2006.10.045
25 Molodov D A, Gorkaya T, Gottstein G. Migration of the Σ7 tilt grain boundary in Al under an applied external stress [J]. Scr. Mater., 2011, 65: 990
doi: 10.1016/j.scriptamat.2011.08.030
26 Legros M, Gianola D S, Hemker K J. In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films [J]. Acta Mater., 2008, 56: 3380
doi: 10.1016/j.actamat.2008.03.032
27 Wang L H, Teng J, Liu P, et al. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum [J]. Nat. Commun., 2014, 5: 4402
doi: 10.1038/ncomms5402
28 Zhu Q, Cao G, Wang J W, et al. In situ atomistic observation of disconnection-mediated grain boundary migration [J]. Nat. Commun., 2019, 10: 156
doi: 10.1038/s41467-018-08031-x pmid: 30635566
29 Imrich P J, Kirchlechner C, Motz C, et al. Differences in deformation behavior of bicrystalline Cu micropillars containing a twin boundary or a large-angle grain boundary [J]. Acta Mater., 2014, 73: 240
doi: 10.1016/j.actamat.2014.04.022
30 Mompiou F, Caillard D, Legros M. Grain boundary shear-migration coupling—I. In situ TEM straining experiments in Al polycrystals [J]. Acta Mater., 2009, 57: 2198
doi: 10.1016/j.actamat.2009.01.014
31 Rajabzadeh A, Legros M, Combe N, et al. Evidence of grain boundary dislocation step motion associated to shear-coupled grain boundary migration [J]. Philos. Mag., 2013, 93: 1299
doi: 10.1080/14786435.2012.760760
32 Rajabzadeh A, Mompiou F, Lartigue-Korinek S, et al. The role of disconnections in deformation-coupled grain boundary migration [J]. Acta Mater., 2014, 77: 223
doi: 10.1016/j.actamat.2014.05.062
33 Babcock S E, Balluffi R W. Grain boundary kinetics—I. In situ observations of coupled grain boundary dislocation motion, crystal translation and boundary displacement [J]. Acta Metall., 1989, 37: 2357
doi: 10.1016/0001-6160(89)90033-3
34 Babcock S E, Balluffi R W. Grain boundary kinetics—II. In situ observations of the role of grain boundary dislocations in high-angle boundary migration [J]. Acta Metall., 1989, 37: 2367
doi: 10.1016/0001-6160(89)90034-5
35 Jin M, Minor A M, Stach E A, et al. Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature [J]. Acta Mater., 2004, 52: 5381
doi: 10.1016/j.actamat.2004.07.044
36 Shan Z W, Stach E A, Wiezorek J M K, et al. Grain boundary-mediated plasticity in nanocrystalline nickel [J]. Science, 2004, 305: 654
doi: 10.1126/science.1098741
37 Rupert T J, Gianola D S, Gan Y, et al. Experimental observations of stress-driven grain boundary migration [J]. Science, 2009, 326: 1686
doi: 10.1126/science.1178226 pmid: 20019286
38 Caillard D, Mompiou F, Legros M. Grain-boundary shear-migration coupling. II. Geometrical model for general boundaries [J]. Acta Mater., 2009, 57: 2390
doi: 10.1016/j.actamat.2009.01.023
39 Kheradmand N, Vehoff H, Barnoush A. An insight into the role of the grain boundary in plastic deformation by means of a bicrystalline pillar compression test and atomistic simulation [J]. Acta Mater., 2013, 61: 7454
doi: 10.1016/j.actamat.2013.08.056
40 Wang L, Zhao F, Zhao F P, et al. Grain boundary orientation effects on deformation of Ta bicrystal nanopillars under high strain-rate compression [J]. J. Appl. Phys., 2014, 115: 053528
41 Kim Y, Lee S, Jeon J B, et al. Effect of a high angle grain boundary on deformation behavior of Al nanopillars [J]. Scr. Mater., 2015, 107: 5
doi: 10.1016/j.scriptamat.2015.05.005
42 Li L L, Zhang Z J, Tan J, et al. Stepwise work hardening induced by individual grain boundary in Cu bicrystal micropillars [J]. Sci. Rep., 2015, 5: 15631
doi: 10.1038/srep15631 pmid: 26490543
43 Kaira C S, Singh S S, Kirubanandham A, et al. Microscale deformation behavior of bicrystal boundaries in pure tin (Sn) using micropillar compression [J]. Acta Mater., 2016, 120: 56
doi: 10.1016/j.actamat.2016.08.030
44 Gu X W, Loynachan C N, Wu Z X, et al. Size-dependent deformation of nanocrystalline Pt nanopillars [J]. Nano Lett., 2012, 12: 6385
doi: 10.1021/nl3036993
45 Jang D, Greer J R. Size-induced weakening and grain boundary-assisted deformation in 60 nm grained Ni nanopillars [J]. Scr. Mater., 2011, 64: 77
doi: 10.1016/j.scriptamat.2010.09.010
46 Merkle K L, Thompson L J. Atomic-scale observation of grain boundary motion [J]. Mater. Lett., 2001, 48: 188
doi: 10.1016/S0167-577X(00)00301-3
47 Merkle K L, Thompson L J, Phillipp F. High-resolution electron microscopy at a (113) symmetric Thermally activated step motion observed by tilt grain-boundary in aluminium [J]. Philos. Mag. Lett., 2002, 82: 589
doi: 10.1080/0950083021000038074
48 Merkle K L, Thompson L J, Phillipp F. Collective effects in grain boundary migration [J]. Phys. Rev. Lett., 2002, 88: 225501
doi: 10.1103/PhysRevLett.88.225501
49 Merkle K L, Thompson L J, Phillipp F. Dynamics of grain boundary motion at the atomic level [J]. MRS Online Proc. Libr., 2004, 819: 61
50 Merkle K L, Thompson L J, Phillipp F. In-situ HREM studies of grain boundary migration [J]. Interface Sci., 2004, 12: 277
doi: 10.1023/B:INTS.0000028657.72527.5b
51 Merkle K L, Thompson L J, Phillipp F. High-resolution electron microscopy at a (113) symmetric Thermally activated step motion observed by tilt grain-boundary in aluminium [J]. Philos. Mag. Lett., 2002, 82: 589
doi: 10.1080/0950083021000038074
52 Radetic T, Ophus C, Olmsted D L, et al. Mechanism and dynamics of shrinking island grains in mazed bicrystal thin films of Au [J]. Acta Mater., 2012, 60: 7051
doi: 10.1016/j.actamat.2012.09.012
53 Bowers M L, Ophus C, Gautam A, et al. Step coalescence by collective motion at an incommensurate grain boundary [J]. Phys. Rev. Lett., 2016, 116: 106102
doi: 10.1103/PhysRevLett.116.106102
54 Wang L H, Zhang Y, Zeng Z, et al. Tracking the sliding of grain boundaries at the atomic scale [J]. Science, 2022, 375: 1261
doi: 10.1126/science.abm2612
55 Wei J K, Feng B, Ishikawa R, et al. Direct imaging of atomistic grain boundary migration [J]. Nat. Mater., 2021, 20: 951
doi: 10.1038/s41563-020-00879-z
56 Wei C Z, Thomas S L, Han J, et al. A Continuum Multi-Disconnection-Mode model for grain boundary migration [J]. J. Mech. Phys. Solids, 2019, 133: 103731
doi: 10.1016/j.jmps.2019.103731
57 Zhang L C, Han J, Xiang Y, et al. Equation of motion for a grain boundary [J]. Phys. Rev. Lett., 2017, 119: 246101
doi: 10.1103/PhysRevLett.119.246101
58 Combe N, Mompiou F, Legros M. Heterogeneous disconnection nucleation mechanisms during grain boundary migration [J]. Phys. Rev. Mater., 2019, 3: 060601
59 Combe N, Mompiou F, Legros M. Shear-coupled grain-boundary migration dependence on normal strain/stress [J]. Phys. Rev. Mater., 2017, 1: 033605
60 Guo Y L, Wang J C, Wang Z J, et al. Effects of a disconnection dipole on the shear-coupled grain boundary migration [J]. Comput. Mater. Sci., 2015, 109: 253
doi: 10.1016/j.commatsci.2015.07.037
61 Zhang L, Lu C, Tieu K, et al. The shear response of copper bicrystals with Σ11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation [J]. Nanoscale, 2015, 7: 7224
doi: 10.1039/C4NR07496C
62 Wan L, Wang S Q. Shear response of the Σ11, <110>{131} symmetric tilt grain boundary studied by molecular dynamics [J]. Model. Simul. Mater. Sci. Eng., 2009, 17: 45008
doi: 10.1088/0965-0393/17/4/045008
63 Wan L, Wang S Q. Shear response of the Σ9<110>{221} symmetric tilt grain boundary in fcc metals studied by atomistic simulation methods [J]. Phys. Rev., 2010, 82B: 214112
64 Combe N, Mompiou F, Legros M. Disconnections kinks and competing modes in shear-coupled grain boundary migration [J]. Phys. Rev., 2016, 93B: 024109
65 Thomas S L, Wei C Z, Han J, et al. Disconnection description of triple-junction motion [J]. Proc. Natl. Acad. Sci. USA, 2019, 116: 8756
doi: 10.1073/pnas.1820789116
66 Wei C Z, Zhang L C, Han J, et al. Grain boundary triple junction dynamics: A continuum disconnection model [J]. SIAM J. Appl. Math., 2020, 80: 1101
doi: 10.1137/19M1277722
67 Cahn J W, Mishin Y, Suzuki A. Coupling grain boundary motion to shear deformation [J]. Acta Mater., 2006, 54: 4953
doi: 10.1016/j.actamat.2006.08.004
68 Cahn J W, Mishin Y, Suzuki A. Duality of dislocation content of grain boundaries [J]. Philos. Mag., 2006, 86: 3965
doi: 10.1080/14786430500536909
69 Rae C M F, Smith D A. On the mechanisms of grain boundary migration [J]. Philos. Mag., 1980, 41A: 477
70 Guillope M, Poirier J P. A model for stress-induced migration of tilt grain boundaries in crystals of NaCl structure [J]. Acta Metall., 1980, 28: 163
doi: 10.1016/0001-6160(80)90065-6
71 Fukutomi H, Iseki T, Endo T, et al. Sliding behavior of coincidence grain boundaries deviating from ideal symmetric tilt relationship [J]. Acta Metall. Mater., 1991, 39: 1445
doi: 10.1016/0956-7151(91)90229-T
72 Zhang L C, Han J, Xiang Y, et al. Equation of motion for a grain boundary [J]. Phys. Rev. Lett., 2017, 119: 246101
doi: 10.1103/PhysRevLett.119.246101
73 Zhou H F, Li X Y, Wang Y, et al. Torsional detwinning domino in nanotwinned one-dimensional nanostructures [J]. Nano Lett., 2015, 15: 6082
doi: 10.1021/acs.nanolett.5b02330
74 Song J, Wang J, Liu Y. Characterization of the terrace-defect interfaces using in situ straining techniques [J]. J. Mater. Res., 2021, 36: 2674
doi: 10.1557/s43578-021-00121-9
75 Liebig J P, Mačković M, Spiecker E, et al. Grain boundary mediated plasticity: A blessing for the ductility of metallic thin films? [J]. Acta Mater., 2021, 117079
76 Yu Y N. Metallic Principle [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2013: 411
76 余永宁. 金属学原理 [M]. 第 2版, 北京: 冶金工业出版社, 2013: 441
77 Mara N A, Sergueeva A V, Mara T D, et al. Superplasticity and cooperative grain boundary sliding in nanocrystalline Ni3Al [J]. Mater. Sci. Eng. 2007, A463: 238
78 Yoshida H, Yokoyama K, Shibata N, et al. High-temperature grain boundary sliding behavior and grain boundary energy in cubic zirconia bicrystals [J]. Acta Mater., 2004, 52: 2349
doi: 10.1016/j.actamat.2004.01.026
79 Li Q Z, Wang L H, Teng J, et al. In-situ observation of cooperative grain boundary sliding and migration in the nano-twinned nanocrystalline-Au thin-films [J]. Scr. Mater., 2020, 180: 97
doi: 10.1016/j.scriptamat.2020.01.025
80 Ovid'ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials [J]. Prog. Mater. Sci., 2018, 94: 462
doi: 10.1016/j.pmatsci.2018.02.002
81 Li Q, Song J, Liu G S, et al. Migration kinetics of twinning disconnections in nanotwinned Cu: An in situ HRTEM deformation study [J]. Scr. Mater., 2021, 194: 113621
doi: 10.1016/j.scriptamat.2020.11.006
82 Wang Y B, Sui M L, Ma E. In situ observation of twin boundary migration in copper with nanoscale twins during tensile deformation [J]. Philos. Mag. Lett., 2007, 87: 935
doi: 10.1080/09500830701591493
83 Lee T C, Robertson I M, Birnbaum H K. TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals [J]. Philos. Mag., 1990, 62A: 131
84 Luster J, Morris M A. Compatibility of deformation in two-phase Ti-Al alloys: Dependence on microstructure and orientation relationships [J]. Metall. Mater. Trans., 1995, 26A: 1745
85 Kacher J, Robertson I M. Quasi-four-dimensional analysis of dislocation interactions with grain boundaries in 304 stainless steel [J]. Acta Mater., 2012, 60: 6657
doi: 10.1016/j.actamat.2012.08.036
86 Zhu Q, Zhao S C, Deng C, et al. In situ atomistic observation of grain boundary migration subjected to defect interaction [J]. Acta Mater., 2020, 199: 42
doi: 10.1016/j.actamat.2020.08.021
87 Kondo S, Mitsuma T, Shibata N, et al. Direct observation of individual dislocation interaction processes with grain boundaries [J]. Sci. Adv., 2016, 2: e1501926
doi: 10.1126/sciadv.1501926
88 Wu Z X, Zhang Y W, Srolovitz D J. Deformation mechanisms, length scales and optimizing the mechanical properties of nanotwinned metals [J]. Acta Mater., 2011, 59: 6890
doi: 10.1016/j.actamat.2011.07.038
89 Kacher J, Eftink B P, Cui B, et al. Dislocation interactions with grain boundaries [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18: 227
doi: 10.1016/j.cossms.2014.05.004
90 Yu K Y, Bufford D, Khatkhatay F, et al. In situ studies of irradiation-induced twin boundary migration in nanotwinned Ag [J]. Scr. Mater., 2013, 69: 385
doi: 10.1016/j.scriptamat.2013.05.024
91 Lin Q Y, An X H, Liu H W, et al. In-situ high-resolution transmission electron microscopy investigation of grain boundary dislocation activities in a nanocrystalline CrMnFeCoNi high-entropy alloy [J]. J. Alloys Compd., 2017, 709: 802
doi: 10.1016/j.jallcom.2017.03.194
92 Zhu T, Gao H J. Plastic deformation mechanism in nanotwinned metals: An insight from molecular dynamics and mechanistic modeling [J]. Scr. Mater., 2012, 66: 843
doi: 10.1016/j.scriptamat.2012.01.031
93 Ke X, Ye J C, Pan Z L, et al. Ideal maximum strengths and defect-induced softening in nanocrystalline-nanotwinned metals [J]. Nat. Mater., 2019, 18: 1207
doi: 10.1038/s41563-019-0484-3
94 Wang L H, Han X D, Liu P, et al. In situ observation of dislocation behavior in nanometer grains [J]. Phys. Rev. Lett., 2010, 105: 135501
doi: 10.1103/PhysRevLett.105.135501
95 Wang L H, Zhang Z, Ma E, et al. Transmission electron microscopy observations of dislocation annihilation and storage in nanograins [J]. Appl. Phys. Lett., 2011, 98: 051905
96 Mompiou F, Caillard D, Legros M, et al. In situ TEM observations of reverse dislocation motion upon unloading in tensile-deformed UFG aluminium [J]. Acta Mater., 2012, 60: 3402
doi: 10.1016/j.actamat.2012.02.049
97 Colla M S, Amin-Ahmadi B, Idrissi H, et al. Dislocation-mediated relaxation in nanograined columnar palladium films revealed by on-chip time-resolved HRTEM testing [J]. Nat. Commun., 2015, 6: 5922
doi: 10.1038/ncomms6922 pmid: 25557273
98 Li L L, Zhang Z J, Zhang P, et al. Distinct fatigue cracking modes of grain boundaries with coplanar slip systems [J]. Acta Mater., 2016, 120: 120
doi: 10.1016/j.actamat.2016.06.032
99 Zhang Z F, Li L L, Zhang Z J, et al. Twin boundary: Controllable interface to fatigue cracking [J]. J. Mater. Sci. Technol., 2017, 33: 603
doi: 10.1016/j.jmst.2017.03.022
100 Zhang Z F, Wang Z G. Dependence of intergranular fatigue cracking on the interactions of persistent slip bands with grain boundaries [J]. Acta Mater., 2003, 51: 347
doi: 10.1016/S1359-6454(02)00399-3
101 Zhang Z F, Wang Z G. Grain boundary effects on cyclic deformation and fatigue damage [J]. Prog. Mater. Sci., 2008, 53: 1025
doi: 10.1016/j.pmatsci.2008.06.001
102 Li L L, Zhang P, Zhang Z J, et al. Strain localization and fatigue cracking behaviors of Cu bicrystal with an inclined twin boundary [J]. Acta Mater., 2014, 73: 167
doi: 10.1016/j.actamat.2014.04.004
103 Li L L, Zhang Z J, Zhang P, et al. Controllable fatigue cracking mechanisms of copper bicrystals with a coherent twin boundary [J]. Nat. Commun., 2014, 5: 3536
doi: 10.1038/ncomms4536 pmid: 24667520
104 Zhang Z J, Zhang P, Li L L, et al. Fatigue cracking at twin boundaries: Effects of crystallographic orientation and stacking fault energy [J]. Acta Mater., 2012, 60: 3113
doi: 10.1016/j.actamat.2012.02.016
105 Li L L, Zhang P, Zhang Z J, et al. Intrinsically higher fatigue cracking resistance of the penetrable and movable incoherent twin boundary [J]. Sci. Rep., 2014, 4: 3744
doi: 10.1038/srep03744 pmid: 24434787
106 Zhang P, Zhang Z J, Li L L, et al. Twin boundary: Stronger or weaker interface to resist fatigue cracking? [J]. Scr. Mater., 2012, 66: 854
doi: 10.1016/j.scriptamat.2012.01.028
107 Zhang Z J, Li L L, Zhang P, et al. Fatigue cracking at twin boundary: Effect of dislocation reactions [J]. Appl. Phys. Lett., 2012, 101: 011907
108 Li L L, Zhang Z J, Zhang P, et al. Higher fatigue cracking resistance of twin boundaries than grain boundaries in Cu bicrystals [J]. Scr. Mater., 2011, 65: 505
doi: 10.1016/j.scriptamat.2011.06.009
109 Zhang Z F, Wang Z G. Effects of grain boundaries on cyclic deformation behavior of copper bicrystals and columnar crystals [J]. Acta Mater., 1998, 46: 5063
doi: 10.1016/S1359-6454(98)00162-1
110 Wang A G, An X H, Gu J, et al. Effect of grain size on fatigue cracking at twin boundaries in a CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2020, 39: 1
doi: 10.1016/j.jmst.2019.09.010
111 Li L L, Zhang Z J, Zhang P, et al. Difference in fatigue cracking behaviors of Cu bicrystals with the same component grains but different twin boundaries [J]. Scr. Mater., 2015, 95: 19
doi: 10.1016/j.scriptamat.2014.09.021
112 Li L L, Zhang Z J, Zhang P, et al. Shear fatigue cracking of twin boundary and grain boundary without dislocation impingement [J]. Scr. Mater., 2015, 100: 28
doi: 10.1016/j.scriptamat.2014.12.004
113 Li L L, Zhang Z J, Zhang P, et al. Deformation behaviors of Cu bicrystals with an inclined twin boundary at multiple scales [J]. J. Mater. Sci. Technol., 2017, 33: 698
doi: 10.1016/j.jmst.2016.11.030
114 Hanlon T, Kwon Y N, Suresh S. Grain size effects on the fatigue response of nanocrystalline metals [J]. Scr. Mater., 2003, 49: 675
doi: 10.1016/S1359-6462(03)00393-2
115 Cao A J, Wei Y G. Atomistic simulations of crack nucleation and intergranular fracture in bulk nanocrystalline nickel [J]. Phys. Rev., 2007, 76B: 024113
116 Zhu Q, Huang Q S, Guang C, et al. Metallic nanocrystals with low angle grain boundary for controllable plastic reversibility [J]. Nat. Commun., 2020, 11: 3100
doi: 10.1038/s41467-020-16869-3 pmid: 32555195
117 Molodov D A, Czubayko U, Gottstein G, et al. On the effect of purity and orientation on grain boundary motion [J]. Acta Mater., 1998, 46: 553
doi: 10.1016/S1359-6454(97)00277-2
118 Zhu Q, Huang Q S, Zhou H F, et al. Inclination-governed deformation of dislocation-type grain boundaries [J]. J. Mater. Res., 2021, 36: 1306
doi: 10.1557/s43578-021-00191-9
119 Ciulik J, Taleff E M. Dynamic abnormal grain growth: A new method to produce single crystals [J]. Scr. Mater., 2009, 61: 895
doi: 10.1016/j.scriptamat.2009.07.021
120 Zhu Q, Zhou H F, Chen Y B, et al. Atomistic dynamics of disconnection-mediated grain boundary plasticity: A case study of gold nanocrystals [J]. J. Mater. Sci. Technol., 2022, 125: 182
doi: 10.1016/j.jmst.2022.02.040
121 Wang Z J, Li Q J, Li Y, et al. Sliding of coherent twin boundaries [J]. Nat. Commun., 2017, 8: 1108
doi: 10.1038/s41467-017-01234-8
122 Kim S H, Park J H, Kim H K, et al. Twin boundary sliding in single crystalline Cu and Al nanowires [J]. Acta Mater., 2020, 196: 69
doi: 10.1016/j.actamat.2020.06.028
123 Zhu Q, Kong L Y, Lu H M, et al. Revealing extreme twin-boundary shear deformability in metallic nanocrystals [J]. Sci. Adv., 2021, 7: eabe4758
doi: 10.1126/sciadv.abe4758
124 Upmanyu M, Srolovitz D J, Lobkovsky A E, et al. Simultaneous grain boundary migration and grain rotation [J]. Acta Mater., 2006, 54: 1707
doi: 10.1016/j.actamat.2005.11.036
125 Chen Y B, Huang Q S, Zhu Q, et al. Coordinated grain boundary deformation governed nanograin annihilation in shear cycling [J]. J. Mater. Sci. Technol., 2021, 86: 180
doi: 10.1016/j.jmst.2021.01.032
126 Basak A, Gupta A. Simultaneous grain boundary motion, grain rotation, and sliding in a tricrystal [J]. Mech. Mater., 2015, 90: 229
doi: 10.1016/j.mechmat.2015.01.012
127 Wang L H, Teng J, Liu P, et al. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum [J]. Nat. Commun., 2014, 5: 4402
doi: 10.1038/ncomms5402
128 Li J J, Soh A K, Wu X L. On nanograin rotation by dislocation climb in nanocrystalline materials [J]. Scr. Mater., 2014, 78-79: 5
doi: 10.1016/j.scriptamat.2013.12.021
129 Murayama M, Howe J M, Hidaka H, et al. Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe [J]. Science, 2002, 295: 2433
pmid: 11923534
130 Thomas S L, Chen K T, Han J, et al. Reconciling grain growth and shear-coupled grain boundary migration [J]. Nat. Commun., 2017, 8: 1764
doi: 10.1038/s41467-017-01889-3
131 Upmanyu M, Srolovitz D J, Shvindlerman L S, et al. Molecular dynamics simulation of triple junction migration [J]. Acta Mater., 2002, 50: 1405
doi: 10.1016/S1359-6454(01)00446-3
132 Chen Y B, Zhao S C, Huang Q S, et al. A geometrical model for grain boundary migration mediated formation of multifold twins [J]. Int. J. Plast., 2022, 148: 103128
doi: 10.1016/j.ijplas.2021.103128
133 Chen Y B, Huang Q S, Zhao S C, et al. Penta-twin destruction by coordinated twin boundary deformation [J]. Nano Lett., 2021, 21: 8378
doi: 10.1021/acs.nanolett.1c02970
134 Yu T B, Hansen N, Huang X X. Recovery by triple junction motion in aluminium deformed to ultrahigh strains [J]. Proc. Roy. Soc., 2011, 467A: 3039
135 Yu T B, Hansen N, Huang X X. Linking recovery and recrystallization through triple junction motion in aluminum cold rolled to a large strain [J]. Acta Mater., 2013, 61: 6577
doi: 10.1016/j.actamat.2013.07.040
136 Yu T B, Hughes D A. Strong pinning of triple junction migration for robust high strain nanostructures [J]. Philos. Mag., 2019, 99: 869
doi: 10.1080/14786435.2018.1562282
137 Yu T B, Hughes D A, Hansen N, et al. In situ observation of triple junction motion during recovery of heavily deformed aluminum [J]. Acta Mater., 2015, 86: 269
doi: 10.1016/j.actamat.2014.12.014
138 Shuai L F, Huang T L, Yu T B, et al. Segregation and precipitation stabilizing an ultrafine lamellar-structured Al-0.3%Cu alloy [J]. Acta Mater., 2021, 206: 116595
doi: 10.1016/j.actamat.2020.116595
139 Gifkins R C. Grain-boundary sliding and its accommodation during creep and superplasticity [J]. Metall. Trans., 1976, 7A: 1225
140 Kaibyshev O A, Pshenichniuk A I, Astanin V V. Superplasticity resulting from cooperative grain boundary sliding [J]. Acta Mater., 1998, 46: 4911
doi: 10.1016/S1359-6454(98)00197-9
141 Van Swygenhoven H, Derlet P M. Grain-boundary sliding in nanocrystalline fcc metals [J]. Phys. Rev., 2001, 64B: 224105
142 Bobylev S V, Morozov N F, Ovid'ko I A. Cooperative grain boundary sliding and migration process in nanocrystalline solids [J]. Phys. Rev. Lett., 2010, 105: 055504
143 Ovid'ko I A, Sheinerman A G. Grain boundary sliding, triple junction disclinations and strain hardening in ultrafine-grained and nanocrystalline metals [J]. Int. J. Plast., 2017, 96: 227
doi: 10.1016/j.ijplas.2017.05.005
144 Hasnaoui A, Van Swygenhoven H, Derlet P M. Cooperative processes during plastic deformation in nanocrystalline fcc metals: A molecular dynamics simulation [J]. Phys. Rev., 2002, 66B: 184112
145 Li J J, Soh A K. Synergy of grain boundary sliding and shear-coupled migration process in nanocrystalline materials [J]. Acta Mater., 2013, 61: 5449
doi: 10.1016/j.actamat.2013.05.033
146 Ovid'ko I A, Sheinerman A G, Aifantis E C. Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids [J]. Acta Mater., 2011, 59: 5023
doi: 10.1016/j.actamat.2011.04.056
147 Yu M, Fang Q H, Feng H, et al. Effect of cooperative grain boundary sliding and migration on dislocation emitting from a semi-elliptical blunt crack tip in nanocrystalline solids [J]. Acta Mech., 2014, 225: 2005
doi: 10.1007/s00707-013-1039-3
148 Feng H, Fang Q H, Zhang L C, et al. Effect of cooperative grain boundary sliding and migration on emission of dislocations from a crack tip in nanocrystalline materials [J]. Mech. Mater., 2013, 61: 39
doi: 10.1016/j.mechmat.2013.02.006
149 Zhao Y X, Fang Q H, Liu Y W. Effect of cooperative nanograin boundary sliding and migration on dislocation emission from a blunt nanocrack tip in nanocrystalline materials [J]. Philos. Mag., 2014, 94: 700
doi: 10.1080/14786435.2013.861091
150 Lejček P. Grain Boundary Segregation in Metals [M]. Berlin, Heidelberg: Springer, 2010: 1
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[4] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[5] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[8] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[9] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[10] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[11] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[12] 徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
[13] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[14] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[15] 刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.