Please wait a minute...
金属学报  2020, Vol. 56 Issue (8): 1113-1122    DOI: 10.11900/0412.1961.2019.00392
  本期目录 | 过刊浏览 |
Ti-6Al-4V合金βα相变中晶界α相形成机制的相场模拟
孙佳1,2, 李学雄1, 张金虎1, 王刚3, 杨梅4, 王皞1,5, 徐东生1,5()
1 中国科学院金属研究所 沈阳 110016
2 中国科学院大学 北京 100049
3 华南理工大学材料科学与工程学院 广州 510006
4 江苏理工学院材料工程学院 常州 213001
5 中国科学技术大学材料科学与工程学院 沈阳 110016
Phase Field Modeling of Formation Mechanism of Grain Boundary Allotriomorph in βα Phase Transformation in Ti-6Al-4V Alloy
SUN Jia1,2, LI Xuexiong1, ZHANG Jinhu1, WANG Gang3, YANG Mei4, WANG Hao1,5, XU Dongsheng1,5()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
4 School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China
5 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

孙佳, 李学雄, 张金虎, 王刚, 杨梅, 王皞, 徐东生. Ti-6Al-4V合金βα相变中晶界α相形成机制的相场模拟[J]. 金属学报, 2020, 56(8): 1113-1122.
Jia SUN, Xuexiong LI, Jinhu ZHANG, Gang WANG, Mei YANG, Hao WANG, Dongsheng XU. Phase Field Modeling of Formation Mechanism of Grain Boundary Allotriomorph in βα Phase Transformation in Ti-6Al-4V Alloy[J]. Acta Metall Sin, 2020, 56(8): 1113-1122.

全文: PDF(2144 KB)   HTML
摘要: 

使用相场模型研究了Ti-6Al-4V合金在βα相变过程中晶界α相(αGB)的形核及晶界润湿生长过程。通过耦合Thermo-Calc热力学数据与相场模型模拟出的组织与实际形貌一致。结果表明,特殊构造的噪声项使β/β晶界处失稳,并促进α相在晶界上的形核。相变初期析出的α相颗粒较多的情况下生成的αGB形貌为连续的平滑状;反之,较少的α初始核会导致不连续αGB的生成,模拟结果揭示了实验中不同形貌αGB的形成机制。晶界润湿由不完全润湿到完全润湿可以是一个连续过程而不需其它反应即可实现。随噪声时间从50 s延长到80 s,αGB晶界润湿速率越来越快,且α相的体积分数逐渐增大;随噪声强度由0.05增大到0.11,反应速率也逐渐加快,而α相体积分数可能先增大后减小。噪声时间与强度对αGB形貌影响的规律与实验观察到的不同条件下的αGB形貌一致,可为晶界α相及合金的疲劳性能的控制提供信息。

关键词 Ti-6Al-4V相场噪声项αGB晶界润湿相变    
Abstract

The microstructure evolution with grain boundary wetting phase transformation of α allotriomorph during the βα phase transformation in Ti-6Al-4V alloy has been investigated by means of phase field modeling. A realistic microstructure was generated by coupling the Thermo-Calc thermodynamic parameters and phase field evolution equations. It is shown that the specially constructed thermal noise terms disturb the β/β interfaces and can produce heterogeneous nucleation of α phase at energetically favorable points such as triple junctions and β grain boundaries (GBs). A small amount of αGB (grain boundary α) nuclei formed at the early stage of phase transition would lead to the formation of discontinuous αGB; while a large number of αGB nuclei can result in the formation of continuous αGB. GBs can be "wetted" by a second solid phase through the reversible transition from incomplete to complete solid state wetting at a certain temperature without a new reaction. The volume fraction of α phase and the grain number increased gradually as the noise amplitude increased from 0.05 to 0.11, or noise duration from 50 s to 80 s. Both noise amplitude and time could control the formation kinetics of αGB, which will influence the microstructure, and the fatigue properties of Ti alloys can be altered if these are controlled experimentally.

Key wordsTi-6Al-4V    phase field model    thermal noise term    αGB    grain boundary wetting
收稿日期: 2019-11-18     
ZTFLH:  TG146.22  
基金资助:国家重点研发计划项目(2016YFB0701304);中国科学院战略性先导科技专项项目(XDC01040100);中国科学院信息化专项项目(XXH13506-304);国家自然科学基金项目(51671195)
作者简介: 孙 佳,女,1988年生,博士
ParameterValueUnit
r[-0.5,0.5]
ξnoise0.05, 0.07, 0.09, 0.11
tnoise50,60,70,80s
R8.314J·mol-1·K-1
T1213K

σ

ω

0.0362

0.00036

J·m-2
W0.5×10-6m
a12/3
κ0.001814

Mij

L

1.0×10-18

80

Δt0.1s
Δx5×10-8m
表1  相场动力学的模拟参数
图1  耦合噪声条件下的模拟组织演化
图2  无噪声条件下的模拟组织,及有无噪声条件下α相的体积分数随时间的演化
图3  模拟组织(图1d)局部放大图及沿AB线的Al和V的浓度分布
图4  连续αGB的形成过程:噪声强度ξnoise=0.05、噪声时间tnoise=50 s条件下的模拟组织局部放大图
图5  不连续αGB的形成过程:ξnoise=0.05、tnoise=50 s条件下的模拟组织局部放大图
图6  晶界润湿由不完全到完全润湿的过程示意图
图7  tnoise=50 s时,ξnoise=0.11条件下的模拟组织形貌及不同噪声强度对α相体积分数随时间演化的影响
图8  ξnoise=0.05时,tnoise=80 s条件下的模拟获得的组织及不同噪声时间条件下α相体积分数随时间的演化规律
[1] Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review [J]. Prog. Mater. Sci., 2009, 54: 397
doi: 10.1016/j.pmatsci.2008.06.004
[2] Shi R, Wang Y. Variant selection during α precipitation in Ti-6Al-4V under the influence of local stress—A simulation study [J]. Acta Mater., 2013, 61: 6006
doi: 10.1016/j.actamat.2013.06.042
[3] Gornakova A S, Prokofiev S I, Straumal B B, et al. Growth of (αTi) grain-boundary layers in Ti-Co alloys [J]. Russ. J. Non-Ferrous Met., 2016, 57: 703
doi: 10.3103/S1067821216070099
[4] Egorova Y B, Il'in A A, Kolachev B A, et al. Effect of the structure on the cutability of titanium alloys [J]. Met. Sci. Heat Treat., 2003, 45: 134
doi: 10.1023/A:1024527807272
[5] Fishgoit A V, Maistrov V M, Il'in A A, et al. Interaction of short cracks with the structure of metals [J]. Sov. Mater. Sci., 1990, 25: 571
doi: 10.1007/BF00727082
[6] Bobovnikov V N, Luk'yanenko V V, Fishgoit A V. Effect of particles of the insoluble phase Al9FeNi on the kinetics of fatigue crack propagation in alloy Ak4-1 [J]. Met. Sci. Heat Treat., 1982, 24: 191
doi: 10.1007/BF01166851
[7] Kolachev B A, Lyasotskaya V S. Correlation between diagrams of isothermal and anisothermal transformations and phase composition diagram of hardened titanium alloys [J]. Met. Sci. Heat Treat., 2003, 45: 119
doi: 10.1023/A:1024571622294
[8] Straumal B B, Baretzky B, Kogtenkova O A, et al. Wetting of grain boundaries in Al by the solid Al3Mg2 phase [J]. J. Mater. Sci., 2010, 45: 2057
doi: 10.1007/s10853-009-4014-6
[9] Lütjering G, Williams J C. Titanium [M]. Berlin, Heidelberg: Springer-Verlag, 2007: 1
[10] Beeler J R. Computer experiments on point defect configurations and energies in Ti-M systems [J]. JOM, 1968, 20(1): 383
[11] Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys [J]. Mater. Sci. Eng., 1998, A243: 32
[12] Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater., 2013, 61: 844
doi: 10.1016/j.actamat.2012.10.043
[13] Furuhara T, Aaronson H I. Crystallography and interfacial structure of proeutectoid α grain boundary allotriomorphs in a hypoeutectoid Ti-Cr alloy [J]. Acta Metall. Mater., 1991, 39: 2887
doi: 10.1016/0956-7151(91)90105-A
[14] Liu C M, Wang H M, Tian X J, et al. Development of a pre-heat treatment for obtaining discontinuous grain boundary α in laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe alloy [J]. Mater. Sci. Eng., 2014, A604: 176
[15] Gornakova A S, Straumal B B, Nekrasov A N, et al. Grain boundary wetting by a second solid phase in Ti-Fe alloys [J]. J. Mater. Eng. Perform., 2018, 27: 4989
doi: 10.1007/s11665-018-3300-3
[16] Heo T W, Zhang L, Du Q, et al. Incorporating diffuse-interface nuclei in phase-field simulations [J]. Scr. Mater., 2010, 63: 8
doi: 10.1016/j.scriptamat.2010.02.028
[17] Karma A, Rappel W J. Phase-field model of dendritic sidebranching with thermal noise [J]. Phys. Rev., 1999, 60E: 3614
[18] Karma A. Fluctuations in solidification [J]. Phys. Rev., 1993, 48E: 3441
[19] Hubert J, Cheng M, Emmerich H. Effect of noise-induced nucleation on grain size distribution studied via the phase-field crystal method [J]. J. Phys. Condens. Matter, 2009, 21: 464108
doi: 10.1088/0953-8984/21/46/464108
[20] Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys [J]. Phys. Rev., 1999, 60E: 7186
[21] Kundin J, Pogorelov E, Emmerich H. Phase-field modeling of the microstructure evolution and heterogeneous nucleation in solidifying ternary Al-Cu-Ni alloys [J]. Acta Mater., 2015, 83: 448
doi: 10.1016/j.actamat.2014.09.057
[22] Ovid'ko I A. Deformation and diffusion modes in nanocrystalline materials [J]. Int. Mater. Rev., 2005, 50: 65
doi: 10.1179/174328005X14294
[23] Bronchart Q, Le Bouar Y, Finel A. New coarse-grained derivation of a phase field model for precipitation [J]. Phys. Rev. Lett., 2008, 100: 015702
pmid: 18232784
[24] Gránásy L, Pusztai T, Warren J A. Modelling polycrystalline solidification using phase field theory [J]. J. Phys. Condens. Matter, 2004, 16: R1205
[25] Wynblatt P, Chatain D. Solid-state wetting transitions at grain boundaries [J]. Mater. Sci. Eng., 2008, A495: 119
[26] McEldowney D J, Tamirisakandala S, Miracle D B. Heat-treatment effects on the microstructure and tensile properties of powder metallurgy Ti-6Al-4V alloys modified with boron [J]. Metall. Mater. Trans., 2010, 41A: 1003
[27] Chen Y Y, Du Z X, Xiao S L, et al. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy [J]. J. Alloys Compd., 2014, 586: 588
doi: 10.1016/j.jallcom.2013.10.096
[28] Nag S, Banerjee R, Stechschulte J, et al. Comparison of microstructural evolution in Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys [J]. J. Mater. Sci. Mater. Med., 2005, 16: 679
pmid: 15965601
[29] Sun Z C, Li X S, Wu H L, et al. A unified growth model of the secondary grain boundary α phase in TA15 Ti-alloy [J]. J. Alloys Compd., 2016, 689: 693
doi: 10.1016/j.jallcom.2016.08.013
[30] Guo W, Spatschek R, Steinbach I. An analytical study of the static state of multi-junctions in a multi-phase field model [J]. Physica, 2011, 240D: 382
[31] Fisher J C. Calculation of diffusion penetration curves for surface and grain boundary diffusion [J]. J. Appl. Phys., 1951, 22: 74
doi: 10.1063/1.1699825
[32] Liu C M, Lu Y, Tian X J, et al. Influence of continuous grain boundary α on ductility of laser melting deposited titanium alloys [J]. Mater. Sci. Eng., 2016, A661: 145
[33] Liu C M, Yu L, Zhang A L, et al. Beta heat treatment of laser melting deposited high strength near β titanium alloy [J]. Mater. Sci. Eng., 2016, A673: 185
[34] Foltz J W, Welk B, Collins P C, et al. Formation of grain boundary α in β Ti alloys: Its role in deformation and fracture behavior of these alloys [J]. Metall. Mater. Trans., 2011, 42A: 645
[35] Lütjering G, Albrecht J, Sauer C, et al. The influence of soft, precipitate-free zones at grain boundaries in Ti and Al alloys on their fatigue and fracture behavior [J]. Mater. Sci. Eng., 2007, A468-470: 201
[36] Liu C Y, Gu W Y, Kong D J, et al. The significant effects of the alkali-metal cations on ZSM-5 zeolite synthesis: From mechanism to morphology [J]. Microporous Mesoporous Mater., 2014, 183: 30
doi: 10.1016/j.micromeso.2013.08.037
[37] Wang Y, Zhang S Q, Tian X J, et al. High-cycle fatigue crack initiation and propagation in laser melting deposited TC18 titanium alloy [J]. Int. J. Miner. Metall. Mater., 2013, 20: 665
doi: 10.1007/s12613-013-0781-9
[38] Straumal B B, Kogtenkova O A, Murashkin M Y, et al. Grain boundary wetting transition in Al-Mg alloys [J]. Mater. Lett., 2017, 186: 82
doi: 10.1016/j.matlet.2016.09.088
[39] Protasova S G, Kogtenkova O A, Straumal B B, et al. Inversed solid-phase grain boundary wetting in the Al-Zn system [J]. J. Mater. Sci., 2011, 46: 4349
doi: 10.1007/s10853-011-5322-1
[40] Zhu C S, Liu B C, Jing T, et al. Dependence of dendritic side-branches on parameters in phase-field simulations [J]. Mater. Trans., 2005, 46: 15
doi: 10.2320/matertrans.46.15
[41] Elder K R, Katakowski M, Haataja M, et al. Modeling elasticity in crystal growth [J]. Phys. Rev. Lett., 2002, 88: 245701
doi: 10.1103/PhysRevLett.88.245701 pmid: 12059316
[42] Straumal B B, Gornakova A S, Kogtenkova O A, et al. Continuous and discontinuous grain-boundary wetting in ZnxAl1-x [J]. Phys. Rev., 2008, 78B: 054202
[43] Kundin J, Chen H L, Siquieri R, et al. Investigation of the heterogeneous nucleation in a peritectic AlNi alloy [J]. Eur. Phys. J. Plus, 2011, 126: 96
doi: 10.1140/epjp/i2011-11096-6
[44] Kundin J, Wang P, Emmerich H, et al. Investigation of Al-Cu-Ni alloy solidification: Thermodynamics, experiments and phase-field modeling [J]. Eur. Phys. J. Spec. Top., 2014, 223: 567
doi: 10.1140/epjst/e2014-02110-6
[1] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[3] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[4] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[5] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[6] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[7] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[8] 樊永霞, 王建, 张学哲, 王建忠, 汤慧萍. SEBM成形片状极小曲面点阵材料的力学性能[J]. 金属学报, 2021, 57(7): 871-879.
[9] 孙正阳, 杨超, 柳文波. UO2烧结过程的相场模拟[J]. 金属学报, 2020, 56(9): 1295-1303.
[10] 孙正阳, 王昱天, 柳文波. 气孔与晶界相互作用的相场模拟[J]. 金属学报, 2020, 56(12): 1643-1653.
[11] 赵宝军,赵宇宏,孙远洋,杨文奎,侯华. Mn含量对Fe-Cu-Mn合金纳米富Cu析出相影响的相场法研究[J]. 金属学报, 2019, 55(5): 593-600.
[12] 魏铖, 柯常波, 马海涛, 张新平. 基于序参量梯度的改进相场模型及对大尺度体系马氏体相变的模拟研究[J]. 金属学报, 2018, 54(8): 1204-1214.
[13] 王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.
[14] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[15] 高英俊, 卢昱江, 孔令一, 邓芊芊, 黄礼琳, 罗志荣. 晶体相场模型及其在材料微结构演化中的应用[J]. 金属学报, 2018, 54(2): 278-292.