Please wait a minute...
金属学报  2021, Vol. 57 Issue (9): 1171-1183    DOI: 10.11900/0412.1961.2021.00130
  综述 本期目录 | 过刊浏览 |
热电材料的载流子迁移率优化
赵立东(), 王思宁, 肖钰()
北京航空航天大学 材料科学与工程学院 北京 100191
Carrier Mobility Optimization in Thermoelectric Materials
ZHAO Li-Dong(), WANG Sining, XIAO Yu()
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
引用本文:

赵立东, 王思宁, 肖钰. 热电材料的载流子迁移率优化[J]. 金属学报, 2021, 57(9): 1171-1183.
Li-Dong ZHAO, Sining WANG, Yu XIAO. Carrier Mobility Optimization in Thermoelectric Materials[J]. Acta Metall Sin, 2021, 57(9): 1171-1183.

全文: PDF(3222 KB)   HTML
摘要: 

热电材料是一种能将热能与电能直接相互转换的功能材料,其热电转换效率由材料的平均热电优值决定。高热电优值要求材料同时具有高的电传输性能和低的热导率,即“电子晶体-声子玻璃”特性。常用的能带调控和缺陷设计虽然能优化载流子有效质量和晶格热导率,但同时会造成载流子迁移率的降低,使得材料的平均热电优值提升有限。所以,保持高的载流子迁移率是提升材料在宽温域内平均热电优值的关键。本综述总结了提高热电材料载流子迁移率的方法,包括晶体缺陷调控和热电耦合参数调控。其中,晶体缺陷调控包括制备晶体、对称性调控和微缺陷调控策略;热电耦合参数调控包括能带对齐、调制掺杂和能带锐化策略。同时讨论了这些策略在多个热电材料体系中的应用,证明以上策略可以有效平衡载流子与声子散射,协同调控载流子迁移率、有效质量和载流子浓度之间的关系,在宽温域内获得热电优值的大幅提升。概括表明,载流子迁移率优化策略是一种提升热电材料性能的有效手段,为开发高效热电材料提供了新的研究思路。

关键词 热电材料载流子迁移率载流子有效质量晶格热导率    
Abstract

Thermoelectric (TE) materials are functional materials that can realize the direct and reversible conversion between heat and electricity. Their conversion efficiency is determined by their average figure of merit (ZTave). Generally, high ZTave requires TE materials to possess both excellent electrical transport properties and low thermal conductivity, called “electron crystal-phonon glass.” To date, although commonly used band manipulation and defect designing strategies can optimize the carrier effective mass and lattice thermal conductivity, they reduce the carrier mobility and thus limit the improvement of ZTave. Therefore, maintaining high carrier mobility is essential for improving ZTave over a wide temperature range. In this review, the methods to optimize carrier mobility, including crystal defect manipulations and multiple coupling parameter manipulations, were summarized. Specifically, crystal defect manipulations include strategies of crystal growth, crystal symmetry manipulation, and point defect manipulation, and the multiple coupling parameter manipulations include band alignment strategies, modulation doping, and band sharpening. Further, the applications of these strategies in multiple TE material systems were discussed, such as in SnSe/S, PbTe/Se/S, BiCuSeO, and BiAgSeS compounds. It was proven that the above strategies can well optimize the TE performance over the entire working temperature by effectively balancing carrier and phonon scattering and synergistically manipulating the coupling relationships between carrier mobility, effective mass, and carrier density. The importance of carrier mobility optimization in TE materials and a new research idea for developing high-efficiency TE materials were presented.

Key wordsthermoelectric material    carrier mobility    carrier effective mass    lattice thermal conductivity
收稿日期: 2021-03-31     
ZTFLH:  TG132.24  
基金资助:国家重点研发计划项目(2018YFA0702100);国家自然科学基金项目(51772012);国家杰出青年科学基金项目(51925101);国家创新人才博士后计划项目(BX20190028);中国博士后科学基金项目(2019M660399);高等学校学科创新引智计划No.B17002,北京市自然科学基金项目(JQ18004);深圳孔雀计划团队项目(KQTD-2016022619565991)
作者简介: 赵立东,男,1979年生,教授,博士
图1  载流子迁移率调控示意图Color online(a) schematic of crystal defect manipulations(b) schematic of multiple coupling parameter manipulations (n—carrier density, μ—carrier mobility, m*—effective mass)(c) power factor (PF) varies with n and μ in crystal defect manipulations(d) PF varies with n and μ in multiple coupling parameter manipulations(e) figure of merit (ZT) varies with n and μ in crystal defect manipulations(f) ZT varies with n and μ inmultiple coupling parameter manipulations
图2  制备晶体提升载流子迁移率与热电性能Color online(a) schematic of carrier scattering in polycrystals and crystals(b) changes of μ with temperatures (T) (The inset presents the measurement direction of polycrystals in Figs.2b-d; P—pressing direction)(c) changes of PF with T(d) changes of ZT with T
图3  对称性调控提升载流子迁移率与热电性能Color online(a) schematic of relationship between symmetry and μ (a, b, c—a, b, c axis; D—Se interlayer distance; d—Se intralayer distance)(b) μ as a function of n(c) PF as a function of T(d) ZT as a function of T
图4  微缺陷调控提升载流子迁移率与热电性能Color online(a) schematic of point defects scattering to carriers and phonons(b) μ as a function of n(c) μ as a function of the reciprocal of lattice thermal conductivity (1 / κlat)(d) comparisons of μ / κlat(e) PF as a function of T(f) ZT as a function of T (ZTave—average figure of merit)
图5  能带能量对齐提升载流子迁移率与热电性能Color online(b) μ as a function of n(c) quality factor (B) as a function of T(d) ZT as a function of T
图6  调制掺杂提升载流子迁移率与热电性能(a) schematic of modulation doping (b) μ as a function of n in BiCuSeO[90] and BiAgSeS[93](c) PF as a function of T (d) ZT as a function of T
图7  能带锐化提升载流子迁移率与热电性能(a) schematic of the relationship between band sharpening and carrier mobility(b) μ as a function of n (c) B as a function of T (d) ZT as a function of T
1 Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J]. Science, 2008, 321: 1457
2 Xiao Y, Zhao L D. Seeking new, highly effective thermoelectrics [J]. Science, 2020, 367: 1196
3 DiSalvo F J. Thermoelectric cooling and power generation [J]. Science, 1999, 285: 703
4 Yang J H, Stabler F R. Automotive applications of thermoelectric materials [J]. J. Electron. Mater., 2009, 38: 1245
5 Zhang X, Zhao L D. Thermoelectric materials: Energy conversion between heat and electricity [J]. J. Materiomics, 2015, 1: 92
6 Chang C, Zhao L D. Anharmoncity and low thermal conductivity in thermoelectrics [J]. Mater. Today Phys., 2018, 4: 50
7 Case E D. Thermal fatigue and waste heat recovery via thermoelectrics [J]. J. Electron. Mater., 2012, 41: 1811
8 Zhao L D, He J Q, Hao S Q, et al. Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS [J]. J. Am. Chem. Soc., 2012, 134: 16327
9 Snyder G J, Snyder A H. Figure of merit ZT of a thermoelectric device defined from materials properties [J]. Energy Environ. Sci., 2017, 10: 2280
10 Hu X K, Zhang S M, Zhao F, et al. Thermoelectric device: Contact interface and interface materials [J]. J. Inorg. Mater., 2019, 34: 269
10 胡晓凯, 张双猛, 赵 府等. 热电器件的界面和界面材料 [J]. 无机材料学报, 2019, 34: 269
11 Zhang Q H, Bai S Q, Chen L D. Technologies and applications of thermoelectric devices: Current status, challenges and prospects [J]. J. Inorg. Mater., 2019, 34: 279
11 张骐昊, 柏胜强, 陈立东. 热电发电器件与应用技术: 现状、挑战与展望 [J]. 无机材料学报, 2019, 34: 279
12 Kanatzidis M G. Nanostructured thermoelectrics: The new paradigm? [J]. Chem. Mater., 2010, 22: 648
13 Snyder G J, Toberer E S. Complex thermoelectric materials [J]. Nat. Mater., 2008, 7: 105
14 Xiao Y, Li W, Chang C, et al. Synergistically optimizing thermoelectric transport properties of n-type PbTe via Se and Sn co-alloying [J]. J. Alloys Compd., 2017, 724: 208
15 Sales B C. Electron crystals and phonon glasses: A new path to improved thermoelectric materials [J]. MRS Bull., 1998, 23: 15
16 Zhao L D, Dravid V P, Kanatzidis M G. The panoscopic approach to high performance thermoelectrics [J]. Energy Environ. Sci., 2014, 7: 251
17 Ren P, Liu Y M, He J, et al. Recent advances in inorganic material thermoelectrics [J]. Inorg. Chem. Front., 2018, 5: 2380
18 Wang H, Pei Y Z, LaLonde A D, et al. Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe [J]. Proc. Natl. Acad. Sci. USA, 2012, 109: 9705
19 Zhang G, Li B W. Impacts of doping on thermal and thermoelectric properties of nanomaterials [J]. Nanoscale, 2010, 2: 1058
20 Pan L, Mitra S, Zhao L D, et al. The role of ionized impurity scattering on the thermoelectric performances of rock salt AgPbm-SnSe2+m [J]. Adv. Funct. Mater., 2016, 26: 5149
21 Zhao L D, Wu H J, Hao S Q, et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance [J]. Energy Environ. Sci., 2013, 6: 3346
22 Zhang L J, Qin P, Han C, et al. Enhanced thermoelectric performance through synergy of resonance levels and valence band convergence via Q/In (Q = Mg, Ag, Bi) co-doping [J]. J. Mater. Chem., 2018, 6A: 2507
23 Pei Y Z, Shi X Y, LaLonde A, et al. Convergence of electronic bands for high performance bulk thermoelectrics [J]. Nature, 2011, 473: 66
24 Jaworski C M, Kulbachinskii V, Heremans J P. Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power [J]. Phys. Rev., 2009, 80B: 233201
25 Skipetrov E P, Pichugin N A, Slyn'ko E I, et al. On the resonant level of chromium in the rhombohedral and cubic phases of Pb1-x-yGexCryTe alloys [J]. Semiconductors, 2013, 47: 729
26 Qin Y X, Xiao Y, Zhao L D. Carrier mobility does matter for enhancing thermoelectric performance [J]. APL Mater., 2020, 8: 010901
27 Liu Y, Zhao L D, Zhu Y C, et al. Synergistically optimizing electrical and thermal transport properties of bicuseo via a dual-doping approach [J]. Adv. Energy Mater., 2016, 6: 1502423
28 Tan G J, Zhao L D, Kanatzidis M G. Rationally designing high-performance bulk thermoelectric materials [J]. Chem. Rev., 2016, 116: 12123
29 Qin B C, Wang D Y, He W K, et al. Realizing high thermoelectric performance in p-type SnSe through crystal structure modification [J]. J. Am. Chem. Soc., 2019, 141: 1141
30 Xiao Y, Wang D Y, Zhang Y, et al. Band sharpening and band alignment enable high quality factor to enhance thermoelectric performance in n-type PbS [J]. J. Am. Chem. Soc., 2020, 142: 4051
31 Li J F, Liu W S, Zhao L D, et al. High-performance nanostructured thermoelectric materials [J]. NPG Asia Mater., 2010, 2: 152
32 Shen J J, Fang T, Fu T Z, et al. Lattice thermal conductivity in thermoelectric materials [J]. J. Inorg. Mater., 2019, 34: 260
32 沈家骏, 方 腾, 傅铁铮等. 热电材料中的晶格热导率 [J]. 无机材料学报, 2019, 34: 260
33 Wan C L, Pan W, Xu Q, et al. Effect of point defects on the thermal transport properties of (LaxGd1-x)2Zr2O7: Experiment and theoretical model [J]. Phys. Rev., 2006, 74B: 144109
34 Ge Z H, Qiu Y, Chen Y X, et al. Multipoint defect synergy realizing the excellent thermoelectric performance of n-type polycrystalline SnSe via Re doping [J]. Adv. Funct. Mater., 2019, 29: 1902893
35 Liu W S, Zhang B P, Li J F, et al. Effects of Sb compensation on microstructure, thermoelectric properties and point defect of CoSb3 compound [J]. J. Phys., 2007, 40D: 6784
36 Hu L P, Zhu T J, Liu X H, et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials [J]. Adv. Funct. Mater., 2014, 24: 5211
37 Medlin D L, Snyder G J. Interfaces in bulk thermoelectric materials: a review for current opinion in colloid and interface science [J]. Curr. Opin. Colloid Interface Sci., 2009, 14: 226
38 Rowe D M, Shukla V S, Savvides N. Phonon scattering at grain boundaries in heavily doped fine-grained silicon-germanium alloys [J]. Nature, 1981, 290: 765
39 Mun H, Choi S M, Lee K H, et al. Boundary engineering for the thermoelectric performance of bulk alloys based on bismuth telluride [J]. ChemSusChem, 2015, 8: 2312
40 Chang C, Wu M H, He D S, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals [J]. Science, 2018, 360: 778
41 Zhao L D, Tan G J, Hao S Q, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe [J]. Science, 2016, 351: 141
42 He W K, Wang D Y, Wu H J, et al. High thermoelectric performance in low-cost SnS0.91Se0.09 crystals [J]. Science, 2019, 365: 1418
43 Li S, Wang Y M, Chen C, et al. Heavy doping by bromine to improve the thermoelectric properties of n-type polycrystalline SnSe [J]. Adv. Sci., 2018, 5: 1800598
44 Wei T R, Tan G J, Zhang X M, et al. Distinct impact of alkali-ion doping on electrical transport properties of thermoelectric p-type polycrystalline SnSe [J]. J. Am. Chem. Soc., 2016, 138: 8875
45 Yang H Q, Wang X Y, Wu H, et al. Sn vacancy engineering for enhancing the thermoelectric performance of two-dimensional SnS [J]. J. Mater. Chem. C, 2019, 7: 3351
46 Xiao Y, Chang C, Pei Y L, et al. Origin of low thermal conductivity in SnSe [J]. Phys. Rev., 2016, 94B: 125203
47 He W K, Wang D Y, Dong J F, et al. Remarkable electron and phonon band structures lead to a high thermoelectric performance ZT > 1 in earth-abundant and eco-friendly SnS crystals [J]. J. Mater. Chem., 2018, 6A: 10048
48 He W K, Qin B C, Zhao L D. Predicting the potential performance in p-type SnS crystals via utilizing the weighted mobility and quality factor [J]. Chin. Phys. Lett., 2020, 37: 087104
49 Zhang X X, Chang C, Zhou Y M, et al. BiCuSeO Thermoelectrics: An update on recent progress and perspective [J]. Materials, 2017, 10: 198
50 Li F, Li J F, Zhao L D, et al. Polycrystalline BiCuSeO oxide as a potential thermoelectric material [J]. Energy Environ. Sci., 2012, 5: 7188
51 Zhao L D, Berardan D, Pei Y L, et al. Bi1-xSrxCuSeO oxyselenides as promising thermoelectric materials [J]. Appl. Phys. Lett., 2010, 97: 092118
52 Wang S Y, Sun Y X, Yang J, et al. High thermoelectric performance in Te-free (Bi,Sb)2Se3via structural transition induced band convergence and chemical bond softening [J]. Energy Environ. Sci., 2016, 9: 3436
53 Liu X Y, Wang D Y, Wu H J, et al. Intrinsically low thermal conductivity in BiSbSe3: A promising thermoelectric material with multiple conduction bands [J]. Adv. Funct. Mater., 2019, 29: 1806558
54 Wang S N, Su L Z, Qiu Y T, et al. Enhanced thermoelectric performance in Cl-doped BiSbSe3 with optimal carrier concentration and effective mass [J]. J. Mater. Sci. Technol., 2021, 70: 67
55 Huang Z W, Zhao L D. Sb2Si2Te6: A robust new thermoelectric material [J]. Trends Chem., 2020, 2: 89
56 Luo Y B, Cai S T, Hao S Q, et al. High-performance thermoelectrics from cellular nanostructured Sb2Si2Te6 [J]. Joule, 2020, 4: 159
57 Wang D Y, Huang Z W, Zhang Y, et al. Extremely low thermal conductivity from bismuth selenohalides with 1D soft crystal structure [J]. Sci. China Mater., 2020, 63: 1759
58 Jiang J, Chen L D, Bai S Q, et al. Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering [J]. Scr. Mater., 2005, 52: 347
59 Zhao L D, Zhang B P, Li J F, et al. Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering [J]. Solid State Sci., 2008, 10: 651
60 Li Y W, Li F, Dong J F, et al. Enhanced mid-temperature thermoelectric performance of textured SnSe polycrystals made of solvothermally synthesized powders [J]. J. Mater. Chem., 2016, 4C: 2047
61 Shang P P, Dong J F, Pei J, et al. Highly textured n-type SnSe polycrystals with enhanced thermoelectric performance [J]. Research, 2019, 2019: 9253132
62 Sui J H, Li J, He J Q, et al. Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides [J]. Energy Environ. Sci., 2013, 6: 2916
63 Li J, Zhang X Y, Chen Z W, et al. Low-symmetry rhombohedral GeTe thermoelectrics [J]. Joule, 2018, 2: 976
64 Zhao L D, Lo S H, Zhang Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals [J]. Nature, 2014, 508: 373
65 Duong A T, Nguyen V Q, Duvjir G, et al. Achieving ZT = 2.2 with Bi-doped n-type SnSe single crystals [J]. Nat. Commun., 2016, 7: 13713
66 Peng K L, Lu X, Zhan H, et al. Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals [J]. Energy Environ. Sci., 2016, 9: 454
67 Peng K L, Zhang B, Wu H, et al. Ultra-high average figure of merit in synergistic band engineered SnxNa1-xSe0.9S0.1 single crystals [J]. Mater. Today, 2018, 21: 501
68 Hou Z H, Xiao Y, Zhao L D. Investigation on carrier mobility when comparing nanostructures and bands manipulation [J]. Nanoscale, 2020, 12: 12741
69 Cha J, Zhou C, Lee Y K, et al. High thermoelectric performance in n-type polycrystalline SnSe via dual incorporation of Cl and PbSe and dense nanostructures [J]. ACS Appl. Mater. Interfaces, 2019, 11: 21645
70 Banik A, Vishal B, Perumal S, et al. The origin of low thermal conductivity in Sn1-xSbxTe: Phonon scattering via layered intergrowth nanostructures [J]. Energy Environ. Sci., 2016, 9: 2011
71 Sharp J W, Poon S J, Goldsmid H J. Boundary scattering and the thermoelectric figure of merit [J]. Phys. Status Solidi, 2001, 187A: 507
72 You L, Zhang J Y, Pan S S, et al. Realization of higher thermoelectric performance by dynamic doping of copper in n-type PbTe [J]. Energy Environ. Sci., 2019, 12: 3089
73 Xiao Y, Wu H J, Li W, et al. Remarkable roles of Cu to synergistically optimize phonon and carrier transport in n-Type PbTe-Cu2Te [J]. J. Am. Chem. Soc., 2017, 139: 18732
74 Qian X, Wang D Y, Zhang Y, et al. Contrasting roles of small metallic elements M (M = Cu, Zn, Ni) in enhancing the thermoelectric performance of n-type PbM0.01Se [J]. J. Mater. Chem., 2020, 8A: 5699
75 Qian X, Wu H, Wang D, et al. Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through introducing a small amount of Zn [J]. Mater. Today Phys., 2019, 9: 100102
76 Pei Y Z, May A F, Snyder G J. Self-tuning the carrier concentration of PbTe/Ag2Te composites with excess Ag for high thermoelectric performance [J]. Adv. Energy Mater., 2011, 1: 291
77 Ahn K, Han M K, He J Q, et al. Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit [J]. J. Am. Chem. Soc., 2010, 132: 5227
78 Zhang J, Wu D, He D S, et al. Extraordinary thermoelectric performance realized in n-type PbTe through multiphase nanostructure engineering [J]. Adv. Mater., 2017, 29: 1703148
79 Cai S T, Hao S Q, Luo Z Z, et al. Discordant nature of Cd in PbSe: Off-centering and core-shell nanoscale CdSe precipitates lead to high thermoelectric performance [J]. Energy Environ. Sci., 2020, 13: 200
80 Zeng L J K, Zhang J Y, You L, et al. Enhanced thermoelectric performance in PbSe-SrSe solid solution by Mn substitution [J]. J. Alloys Compd., 2016, 687: 765
81 Zhang X, Wang D Y, Wu H J, et al. Simultaneously enhancing the power factor and reducing the thermal conductivity of SnTe via introducing its analogues [J]. Energy Environ. Sci., 2017, 10: 2420
82 Teng W, Wang H C, Su W B, et al. Simultaneous enhancement of thermoelectric and mechanical performance for SnTe by nano SiC compositing [J]. J. Mater. Chem., 2020, 8: 7393
83 Zheng Y, Wang S Y, Liu W, et al. Thermoelectric transport properties of p-type silver-doped PbS with in situ Ag2S nanoprecipitates [J]. J. Phys., 2014, 47D: 115303
84 Zhao L D, Lo S H, He J Q, et al. High performance thermoelectrics from earth-abundant materials: Enhanced figure of merit in PbS by second phase nanostructures [J]. J. Am. Chem. Soc., 2011, 133: 20476
85 Jiang B B, Liu X X, Wang Q, et al. Realizing high-efficiency power generation in low-cost PbS-based thermoelectric materials [J]. Energy Environ. Sci., 2020, 13: 579
86 Weidner M, Fuchs A, Bayer T J M, et al. Defect modulation doping [J]. Adv. Funct. Mater., 2019, 29: 1807906
87 Zhang X Y, Pei Y Z. Manipulation of charge transport in thermoelectrics [J]. npj Quantum Mater., 2017, 2: 68
88 Tsukazaki A, Akasaka S, Nakahara K, et al. Observation of the fractional quantum Hall effect in an oxide [J]. Nat. Mater., 2010, 9: 889
89 Yu B, Zebarjadi M, Wang H, et al. Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites [J]. Nano Lett., 2012, 12: 2077
90 Pei Y L, Wu H J, Wu D, et al. High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping [J]. J. Am. Chem. Soc., 2014, 136: 13902
91 Zebarjadi M, Joshi G, Zhu G H, et al. Power factor enhancement by modulation doping in bulk nanocomposites [J]. Nano Lett., 2011, 11: 2225
92 Hasan N, Wahid H, Nayan N, et al. Inorganic thermoelectric materials: A review [J]. Int. J. Energy Res., 2020, 44: 6170
93 Wu D, Pei Y L, Wang Z, et al. Significantly enhanced thermoelectric performance in n-type heterogeneous BiAgSeS composites [J]. Adv. Funct. Mater., 2014, 24: 7763
94 Banik A, Shenoy U S, Anand S, et al. Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties [J]. Chem. Mater., 2015, 27: 581
95 Chen Z W, Jian Z Z, Li W, et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence [J]. Adv. Mater., 2017, 29: 1606768
96 Skipetrov E P, Skipetrova L A, Knotko A V, et al. Scandium resonant impurity level in PbTe [J]. J. Appl. Phys., 2014, 115: 133702
97 Maier S, Ohno S, Yu G, et al. Resonant bonding, multiband thermoelectric transport, and native defects in n-type BaBiTe3-xSex (x = 0, 0.05, and 0.1) [J]. Chem. Mater., 2018, 30: 174
98 Xiao Y, Wang D Y, Qin B C, et al. Approaching topological insulating states leads to high thermoelectric performance in n-type PbTe [J]. J. Am. Chem. Soc., 2018, 140: 13097
99 Bali A, Chetty R, Sharma A, et al. Thermoelectric properties of In and I doped PbTe [J]. J. Appl. Phys., 2016, 120: 175101
100 Sootsman J R, Kong H J, Uher C, et al. Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring [J]. Angew. Chem. Int. Ed., 2008, 47: 8618
101 Pei Y Z, Lensch-Falk J, Toberer E S, et al. High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and la doping [J]. Adv. Funct. Mater., 2011, 21: 241
102 Papageorgiou C, Giapintzakis J, Kyratsi T. Low-temperature synthesis and thermoelectric properties of n-type PbTe [J]. J. Electron. Mater., 2013, 42: 1911
103 Zhao M H, Chang C, Xiao Y, et al. Investigations on distinct thermoelectric transport behaviors of Cu in n-type PbS [J]. J. Alloys Compd., 2019, 781: 820
[1] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[2] 刘志愿, 王永贵, 赵成玉, 杨婷, 夏爱林. p型方钴矿热电材料纳米-介观尺度微结构调控[J]. 金属学报, 2022, 58(8): 979-991.
[3] 孙洪元,李双明,冯松科,傅恒志. Co-Sb合金定向凝固组织与相选择[J]. 金属学报, 2013, 49(6): 682-688.
[4] 厉英 马北越 王臻明 姜茂发. Na1.4Co2O4基热电材料的溶胶-凝胶法制备及表征[J]. 金属学报, 2011, 47(1): 109-114.
[5] 杨磊; 吴建生; 张澜庭 . Skutterudite类化合物晶粒长大规律和放电等离子体烧结的研究[J]. 金属学报, 2003, 39(8): 785-789 .