Please wait a minute...
金属学报  2020, Vol. 56 Issue (6): 909-918    DOI: 10.11900/0412.1961.2019.00309
  本期目录 | 过刊浏览 |
基于有限元分析的准晶磨料强化不锈钢表面钝化行为
陈永君1,2, 白妍1, 董闯2,3(), 解志文1, 燕峰1, 吴迪1
1.辽宁科技大学机械工程与自动化学院 鞍山 114051
2.大连理工大学三束材料改性教育部重点实验室 大连 116024
3.大连交通大学光电材料与器件研究所 大连 116082
Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation
CHEN Yongjun1,2, BAI Yan1, DONG Chuang2,3(), XIE Zhiwen1, YAN Feng1, WU Di1
1.School of Mechanical Engineering and Automation, University of Science and Technology LiaoNing, Anshan 114051, China
2.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
3.Institute of Optoelectronic Materials and Device, Dalian Jiaotong University, Dalian 116028, China
引用本文:

陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
Yongjun CHEN, Yan BAI, Chuang DONG, Zhiwen XIE, Feng YAN, Di WU. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. Acta Metall Sin, 2020, 56(6): 909-918.

全文: PDF(2778 KB)   HTML
摘要: 

分别选用金刚石、Al2O3和准晶的单颗粒切削模型对不锈钢表面进行有限元仿真,定性表征准晶磨料对不锈钢表面的作用特点,结合硬度、Mott-Schottky曲线和动电位极化曲线等实验结果,综合分析准晶磨料强化不锈钢表面钝化膜的耐蚀机理。结果表明,经准晶单颗粒磨料反复磨削后,不锈钢表层的等效塑性应变最大,最高可达73%,此结果与实测的碾磨系数变化规律相符。经准晶处理的不锈钢,其纵向影响层表现出较高的梯度等效应力分布特点,与实验测得的不锈钢表层不同深度硬度的变化规律一致,即准晶磨料处理的不锈钢的硬度在不同深度的影响层都保持最高值。Mott-Schottky曲线最低载流子浓度表明,准晶磨料处理的不锈钢表面形成比较完整的钝化膜;动电位极化曲线最小维钝电流密度说明准晶处理的不锈钢表面更容易钝化。

关键词 准晶磨料有限元仿真不锈钢塑性变形耐蚀性    
Abstract

The quasicrystal (QC)-abrasive wear produces a flattened surface compared with traditional abrasives when used to polish metals, opening up new application fields for QC in particle form, but the influence range and extent of QC-abrasive on metal surface are not clear. In this work, the single particle grinding model was used for finite element simulation to qualitatively characterize the effect of QC-abrasive on the subsurface of stainless steel, which was ground by diamond, Al2O3 and QC single particle abrasive, respectively. The effects of three kinds of abrasives on the equivalent stress and strain of stainless steel surface were compared. Combined with the measurement of the gradient hardness of stainless steel subsurface, the Mott-Schottky plots and potentiodynamic polarization curve were given, analyzing the corrosion resistance mechanism of passivation film formed on the surface of stainless steel pretreated with QC-abrasive. The results show that the equivalent plastic strain of the stainless steel surface is the highest, up to 73%, when it is ground by QC single particle abrasive repeatedly for six times, which is consistent with the smearing coefficient measured in the experiment. The smearing-dominating on the surface of stainless steel treated with QC-abrasive is strengthened with time increased, but diamond and Al2O3 abrasives are improved cutting-dominating with time increased. At the same time, a large number of plastic deformation areas accumulated a higher stress, longitudinal sub-surface of stainless steel treated by QC-abrasive show a higher gradient distribution of equivalent stress. The simulation results are consistent with the changes of hardness of stainless steel at different depths measured in the experiment. The hardness of QC-abrasive treated stainless steel maintains the highest value at 200, 400 and 1800 nm to the surface, respectively. It is manifested as the gradient law of gradual decrease from the surface layer to the interior of the matrix. The Mott-Schottky plots with the minimum carrier concentration prove a large amount of plasticity accumulated on the subsurface of stainless steel treated via QC-abrasive, providing the preferred channel for the passivation element to bond with oxygen when the passivation film is formed on the surface. It can promote the formation of a complete passivation film on surface. The minimum passivation current density with 0.73×10-6 A/cm2 of potentiodynamic polarization curve indicates that QC-abrasive pretreated the surface of stainless steel is easier to be passivated. It is also less likely to be punctured to form pitting corrosion due to the relatively high breakdown potential.

Key wordsquasicrystal-abrasive    finite element simulation    stainless steel    plastic deformation    corrosion resistance
收稿日期: 2019-09-18     
ZTFLH:  TG739  
基金资助:国家自然科学基金项目(51901094);国家自然科学基金项目(51771087);辽宁省博士科研启动基金计划项目(2019-BS-124);辽宁省创新人才支持计划项目(LR2017052);辽宁科技大学基金项目(2019RC06);辽宁科技大学基金项目(601011507-07)
作者简介: 陈永君,女,1986年生,博士
图1  有限元网格划分
AbrasiveρEν
kg·m-3GPa
Diamond35009000.20
Al2O339003660.23
QC-Al62Cu25.5Fe12.544921680.23
304 stainless steel78502000.30
表1  刀具磨料及工件304不锈钢材料参数[14,21]
图2  经不同单磨料磨削第1刀和第6刀后不锈钢表面等效塑性应变分布
图3  经不同磨料磨削第1刀和第6刀后不锈钢表层纵向等效塑性应变分布
图4  不同磨料磨削第1刀和第6刀后不锈钢表层纵向等效塑性应变平均值
图5  不同磨料磨削第1刀和第6刀后不锈钢表面纵向等效应力分布
图6  不同磨料磨削第1刀和第6刀后不锈钢表层纵向等效应力平均值
图7  经不同磨料磨削6刀后不锈钢表层的整体等效应力分布
图8  不同磨料碾磨系数与抛光时间的关系
图9  不同磨料对304不锈钢亚表层纳米硬度的影响
图10  304不锈钢经不同磨料处理钝化后在3.5%NaCl溶液中浸泡24 h形成钝化膜的Mott-Schottky曲线
AbrasiveNAND
Diamond8.302.23
Al2O33.091.40
QC2.150.99
表2  不同磨料处理钝化后不锈钢在3.5%NaCl溶液中浸泡24 h后表面钝化膜的载流子浓度 (1021 cm-3)
图11  不同磨料处理的不锈钢在3.5%NaCl溶液中浸泡24 h的动电位极化曲线
Abrasive

icorr

10-7 A·cm-2

Ecorr

VAg/AgCl

ip

10-6 A·cm-2

Eb

VAg/AgCl

Diamond0.30-0.1581.100.312
Al2O30.39-0.1531.460.327
QC0.28-0.1460.730.342
表3  动电位极化曲线的特征参数
[1] Shechtman D, Blech I, Gratias D, et al. Metallic phase with long-range orientational order and No translational symmetry [J]. Phys. Rev. Lett., 1984, 53: 1951
[2] Mackay A L. A dense non-crystallographic packing of equal spheres [J]. Acta Crystallogr., 1962, 15: 916
[3] Suck J B, Schreiber M, Häussler P. Quasicrystals: An Introduction to Structure, Physical Properties and Applications [M]. Berlin Heidelberg: Springer, 2002: 116
[4] Tsai A P, Guo J Q, Abe E, et al. Alloys—A stable binary quasicrystal [J]. Nature, 2000, 408: 537
[5] Dong C. Quasicrystalline Materials [M]. Beijing: National Defense Industry Press, 1998: 158
[5] 董 闯. 准晶材料 [M]. 北京: 国防工业出版社, 1998: 158
[6] Dubois J M, Brunet P, Costin W, et al. Friction and fretting on quasicrystals under vacuum [J]. J. Non-Cryst. Solids, 2004, 334-335: 475
[7] Dubois J M, Kang S S, Massiani Y. Application of quasicrystalline alloys to surface coating of soft metals [J]. J. Non-Cryst. Solids, 1993, 153-154: 443
[8] Dubois J M, de Weerd M C, Brenner J, et al. Surface energy of complex- and simple- metallic compounds as derived from friction test in vacuum [J]. Philos. Mag., 2006, 86: 797
[9] Hättestrand M, Nilsson J O, Stiller K, et al. Precipitation hardening in a 12%Cr-9%Ni-4%Mo-2%Cu stainless steel [J]. Acta Mater., 2004, 52: 1023
[10] Inoue A, Watanabe M, Kimura H M, et al. High mechanical strength of quasicrystalline phase surrounded by fcc-Al phase in rapidly solidified Al-Mn-Ce alloys [J]. Mater. Trans., JIM, 1992, 33: 723
[11] Jenks C J, Thiel P A. Surface properties of quasicrystals [J]. MRS Bull., 1997, 22: 55
[12] Kenzari S, Bonina D, Dubois J M, et al. Quasicrystal-polymer composites for selective laser sintering technology [J]. Mater. Des., 2012, 35: 691
[13] Zhang T, Yuan W J, Gong Z L. AlcCuaXb alloy powder engine oil additive applicable to engine and preparation method thereof [P]. Chin Pat, CN101570711B, 2012
[13] 张 涛, 员文杰, 宫志利. 一种适用于发动机的AlcCuaXb合金粉机油添加剂及其制备方法 [P]. 中国专利, CN101570711B, 2012)
[14] Chen Y J, Qiang J B, Dong C. Smearing-type wear behavior of Al62Cu25.5Fe12.5 quasicrystal abrasive on soft metals [J]. Intermetallics, 2016, 68: 23
[15] Chen Y J, Hu X G, Qiang J B, et al. Quasicrystal abrasive polishing on soft metals via a characteristic smearing wear mechanism for efficient surface flattening, hardening and corrosion enhancement [J]. Acta Metall. Sin., 2016, 52: 1353
[15] 陈永君, 胡小刚, 羌建兵等. 准晶磨料的“碾抹”特性对软金属表面的平整性、硬度及耐蚀性的影响 [J]. 金属学报, 2016, 52: 1353
doi: 10.11900/0412.1961.2016.00392
[16] Yan L, Jiang F, Rong Y M. Grinding mechanism based on single grain cutting simulation [J]. J. Mech. Eng., 2012, 48(11): 172
[16] 言 兰, 姜 峰, 融亦鸣. 基于数值仿真技术的单颗磨粒切削机理 [J]. 机械工程学报, 2012, 48(11): 172
[17] Klocke F, Beck T, Hoppe S, et al. Examples of FEM application in manufacturing technology [J]. J. Mater. Process. Technol., 2002, 120: 450
[18] Wang B, Liu Z Q, Hou X, et al. Influences of cutting speed and material mechanical properties on chip deformation and fracture during high-speed cutting of Inconel 718 [J]. Materials, 2018, 11: 461
[19] Habibzadeh A, Sadeghi M H, Davoodi B, et al. Constitutive modelling of mechanical behaviour of a Ti-alloy, applicable in metal cutting [J]. Adv. Mater. Res., 2010, 83-86: 661
[20] Ling L, Li X X, Wang X L, et al. Constitutive model of stainless steel 0Cr18Ni9 and its influence on cutting force prediction [J]. China Mech. Eng., 2012, 23: 2243
[20] 凌 玲, 李星星, 王学林等. 0Cr18Ni9不锈钢本构模型及其对切削力预测影响分析 [J]. 中国机械工程, 2012, 23: 2243
[21] Jenks C J, Thiel P A. Quasicrystals: A short review from a surface science perspective [J]. Langmuir, 1998, 14: 1392
doi: 10.1021/la970727+
[22] de Lima B A S G, Gomes R M, de Lima S J G, et al. Self-lubricating, low-friction, wear-resistant Al-based quasicrystalline coatings [J]. Sci. Technol. Adv. Mater., 2016, 17: 71
[23] Hakiki N E, Montemor M F, Ferreira M G S, et al. Semiconducting properties of thermally grown oxide films on AISI 304 stainless steel [J]. Corros. Sci., 2000, 42: 687
[24] Hamadou L, Kadri A, Benbrahim N. Impedance investigation of thermally formed oxide films on AISI 304L stainless steel [J]. Corros. Sci, 2010, 52: 859
doi: 10.1016/j.corsci.2009.11.004
[25] Hakiki N B, Boudin S, Rondot B, et al. The electronic structure of passive films formed on stainless steels [J]. Corros. Sci, 1995, 37: 1809
[26] Zhao Y, Cheng C Q, Cao Z Y, et al. Interaction of liquid tin and zinc with AISI 304 stainless steel after passivation in air and nitric acid [J]. Mater. Charact., 2013, 77: 1
[27] Meng F J, Han E H, Wang J Q, et al. Localized corrosion behavior of scratches on nickel-base alloy 690TT [J]. Electrochim. Acta, 2011, 56: 1781
[28] Li X G, He J W. Effect of shot blasting on oxidation behavior of TP304H steel at 610~770 ℃ in water vapor [J]. Mater. Lett., 2006, 60: 339
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[3] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[4] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[5] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[6] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[7] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[8] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[9] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[10] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[11] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[12] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[13] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[14] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[15] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.