|
|
新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制 |
任少飞1,2, 张健杨2, 张新房1( ), 孙明月2,3( ), 徐斌2,3, 崔传勇4 |
1.北京科技大学 冶金与生态工程学院 北京 100083 2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 3.中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016 4.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 |
|
Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism |
REN Shaofei1,2, ZHANG Jianyang2, ZHANG Xinfang1( ), SUN Mingyue2,3( ), XU Bin2,3, CUI Chuanyong4 |
1.School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China 2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.Key Laboratory of Nuclear Materials and Safety, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 4.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
Shaofei REN,
Jianyang ZHANG,
Xinfang ZHANG,
Mingyue SUN,
Bin XU,
Chuanyong CUI.
Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. Acta Metall Sin, 2022, 58(2): 129-140.
1 |
Lin Y C , Wu X Y , Chen X M , et al . EBSD study of a hot deformed nickel-based superalloy [J]. J. Alloys Compd., 2005, 640: 101
|
2 |
Yang X W , Li W Y , Li J L , et al . Finite element modeling of the linear friction welding of GH4169 superalloy [J]. Mater. Des., 2015, 87: 215
|
3 |
Chen X M , Lin Y C , When D X , et al . Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation [J]. Mater. Des., 2014, 57: 568
|
4 |
Qu J L , Xie J F , Bi Z N , et al . Hot deformation characteristics and dynamic recrystallization mechanism of GH4730 Ni-based superalloy [J]. J. Alloys Compd., 2019, 785: 918
|
5 |
Xiang X M , Jiang H , Dong J X , et al . As-cast microstructure characteristic and homogenization of a newly developed hard-deformed Ni-based superalloy GH4975 [J]. Acta Metall. Sin., 2020, 56: 988
|
5 |
向雪梅, 江 河, 董建新 等 . 难变形高温合金GH4975的铸态组织及均匀化 [J]. 金属学报, 2020, 56: 988
|
6 |
Zhang Y , Li X X , Wei K , et al . Hot Deformation characteristics of novel wrought superalloy GH4975 extruded rod used for 850oC turbine disc [J]. Acta Metall. Sin., 2020, 56: 1401
|
6 |
张 勇, 李鑫旭, 韦 康 等 . 850℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究 [J]. 金属学报, 2020, 56: 1401
|
7 |
Bi Z N , Qin H L , Dong Z G , et al . Residual stress evolution and its mechanism during the manufacture of superalloy disk forgings [J]. Acta Metall. Sin., 2019, 55: 1160
|
7 |
毕中南, 秦海龙, 董志国 等 . 高温合金盘锻件制备过程残余应力的演化规律及机制 [J]. 金属学报, 2019, 55: 1160
|
8 |
Cui C Y , Gu Y F , Ping D H , et al . Microstructural evolution and mechanical properties of a Ni-based superalloy, TMW-4 [J]. Metall. Mater. Trans., 2009, 40A: 282
|
9 |
Cui C Y , Gu Y F , Yuan Y , et al . Enhanced mechanical properties in a new Ni-Co base superalloy by controlling microstructures [J]. Mater. Sci. Eng., 2011, A528 : 5465
|
10 |
Yuan Y , Gu Y F , Zhong Z H , et al . Creep mechanisms of a new Ni-Co-base disc superalloy at an intermediate temperature [J]. J. Microsc., 2012, 248: 34
|
11 |
Yuan Y , Gu Y F , Cui C Y , et al . A novel strategy for the design of advanced engineering alloys—Strengthening turbine disk superalloys via twinning structures [J]. Adv. Eng. Mater., 2011, 13: 296
|
12 |
Gu Y F , Cui C Y , Yuan Y , et al . Research progress in a high performance cast & wrought superalloy for turbine disc applications [J]. Acta Metall. Sin., 2015, 51: 1191
|
12 |
谷月峰, 崔传勇, 袁 勇 等 . 一种高性能航空涡轮盘用铸锻合金的研究进展 [J]. 金属学报, 2015, 51: 1191
|
13 |
Ye X , Hua X M , Wang M , et al . Controlling hot cracking in Ni-based Inconel-718 superalloy cast sheets during tungsten inert gas welding [J]. J. Mater. Process. Technol., 2015, 222: 381
|
14 |
Han K , Wang H Q , Shen L , et al . Analysis of cracks in the electron beam welded joint of K465 nickel-base superalloy [J]. Vacuum, 2018, 157: 21
|
15 |
Osoba L O , Ding R G , Ojo O A . Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy [J]. Mater. Charact., 2012, 65: 93
|
16 |
Ravisankar B , Krishnamoorthi J , Ramakrishnan S S , et al . Diffusion bonding of SU 263 [J]. J. Mater. Process. Technol., 2009, 209: 2135
|
17 |
Sah I , Kim D , Lee H J , et al . The recovery of tensile ductility in diffusion-bonded Ni-base alloys by post-bond heat treatments [J]. Mater. Des., 2013, 47: 581
|
18 |
Zhang G , Chandel R S , Seow H P . Solid state diffusion bonding of Inconel 718 [J]. Sci. Technol. Weld. Joining., 2001, 6: 235
|
19 |
Xiong J T , Yuan L , Zhu Y , et al . Diffusion bonding of nickel-based superalloy GH4099 with pure nickel interlayer [J]. J. Mater. Sci., 2019, 54: 6552
|
20 |
Uday M B , Ahmad Fauzi M N , Zuhailawati H , et al . Advances in friction welding process: A review [J]. Sci. Technol. Weld. Joining, 2010, 15: 534
|
21 |
Xie B J , Sun M Y , Xu B , et al . Dissolution and evolution of interfacial oxides improving the mechanical properties of solid state bonding joints [J]. Mater. Des., 2018, 157: 437
|
22 |
Jiang H Y , Sun M Y , Wu M F , et al . Microstructure and properties of 7075 aluminum alloy hot compress bonding joint [J]. Heat Treat. Met., 2020, 45(2): 46
|
22 |
江海洋, 孙明月, 吴铭方 等 . 7075铝合金热变形连接接头的组织与性能 [J]. 金属热处理, 2020, 45(2): 46
|
23 |
Zhang J Y , Xu B , Tariq N H , et al . Microstructure evolutions and interfacial bonding behavior of Ni-based superalloys during solid state plastic deformation bonding [J]. J. Mater. Sci. Technol., 2020, 46: 1
|
24 |
Sun M Y , Xu B , Xie B J , et al . Research advances on homogenization manufacturing of heavy components by metal additive forging [J]. Chin. Sci. Bull., 2020, 65: 3043
|
24 |
孙明月, 徐 斌, 谢碧君 等 . 大锻件均质化构筑成形研究进展 [J]. 科学通报, 2020, 65: 3043
|
25 |
Zhou L Y , Feng S B , Sun M Y , et al . Interfacial microstructure evolution and bonding mechanisms of 14YWT alloys produced by hot compression bonding [J]. J. Mater. Sci. Technol., 2019, 35: 1671
|
26 |
Zhang J Y , Sun M Y , Xu B , et al . Evolution of the interfacial microstructure during the plastic deformation bonding of copper [J]. Mater. Sci. Eng., 2019, A746 : 1
|
27 |
Xie B J , Sun M Y , Xu B , et al . Oxidation of stainless steel in vacuum and evolution of surface oxide scales during hot-compression bonding [J]. Corros. Sci., 2019, 147: 41
|
28 |
Zhao G D , Yu L X , Qi F , et al . The minor precipitation at the final stage of U720Li solidification [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 518
|
29 |
Liu P , Zhang R , Yuan Y , et al . Hot deformation behavior and workability of a Ni-Co based superalloy [J]. J. Alloys Compd., 2020, 83: 154618
|
30 |
Liu F F , Chen J Y , Dong J X , et al . The hot deformation behaviors of coarse, fine and mixed grain for Udimet 720Li superalloy [J]. Mater. Sci. Eng., 2016, A651: 102
|
31 |
Wu Y S , Liu Z , Qin X Z , et al . Effect of initial state on hot deformation and dynamic recrystallization of Ni-Fe based alloy GH984G for steam boiler applications [J]. J. Alloys Compd., 2019, 795: 370
|
32 |
Paggi A , Angella G , Donnini R . Strain induced grain boundary migration effects on grain growth of an austenitic stainless steel during static and metadynamic recrystallization [J]. Mater. Charact., 2015, 107: 174
|
33 |
Sakai T . Dynamic recrystallization microstructures under hot working conditions [J]. J. Mater. Process. Technol., 1995, 53: 349
|
34 |
Cao Y , Di H S , Zhang J C , et al . Research on dynamic recrystallization behavior of Incoloy 800H [J]. Acta Metall. Sin., 2012, 48: 1175
|
34 |
曹 宇, 邸洪双, 张洁岑 等 . 800H合金动态再结晶行为研究 [J]. 金属学报, 2012, 48: 1175
|
35 |
Hu G X , Cai X , Rong Y H . Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiao Tong University Press, 2010: 5
|
35 |
胡赓祥, 蔡 珣, 戎咏华 . 材料科学基础 [M]. 上海: 上海交通大学出版社, 2010: 5
|
36 |
Xie B C , Yu H , Sheng T , et al . DDRX and CDRX of an as-cast nickel-based superalloy during hot compression at γ′ sub-/super-solvus temperatures [J]. J. Alloys Compd., 2019, 803: 16
|
37 |
Hu W , Ponge D , Gottstein G . Origin of grain boundary motion during diffusion bonding by hot pressing [J]. Mater. Sci. Eng., 1995, A190: 223
|
38 |
Mandal S , Jayalakshmi M , Bhaduri A K . et al . Effect of strain rate on the dynamic recrystallization behavior in a nitrogen-enhanced 316L(N) [J]. Metall. Mater. Trans.,2014, 45A: 5645
|
39 |
Bellier S P , Doherty R D . The structure of deformed aluminium and its recrystallization—Investigations with transmission Kossel diffraction [J]. Acta. Metall., 1977, 25: 521
|
40 |
Sakai T , Belyakov A , Kaibyshev R , et al . Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions [J]. Prog. Mater. Sci., 2014, 60: 130
|
41 |
Zhong X T , Wang L , Liu F . Study on formation mechanism of necklace structure in discontinuous dynamic recrystallization of Incoloy 028 [J]. Acta Metall. Sin., 2018, 54: 969
|
41 |
钟茜婷, 王 磊, 刘 峰 . Incoloy 028合金不连续动态再结晶中链状组织形成机理研究 [J]. 金属学报, 2018, 54: 969
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|