Please wait a minute...
金属学报  2022, Vol. 58 Issue (2): 129-140    DOI: 10.11900/0412.1961.2020.00493
  研究论文 本期目录 | 过刊浏览 |
新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制
任少飞1,2, 张健杨2, 张新房1(), 孙明月2,3(), 徐斌2,3, 崔传勇4
1.北京科技大学 冶金与生态工程学院 北京 100083
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
3.中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
4.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism
REN Shaofei1,2, ZHANG Jianyang2, ZHANG Xinfang1(), SUN Mingyue2,3(), XU Bin2,3, CUI Chuanyong4
1.School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Key Laboratory of Nuclear Materials and Safety, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
Shaofei REN, Jianyang ZHANG, Xinfang ZHANG, Mingyue SUN, Bin XU, Chuanyong CUI. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. Acta Metall Sin, 2022, 58(2): 129-140.

全文: PDF(4806 KB)   HTML
摘要: 

为解决镍基高温合金的焊接难题,以新型Ni-Co基高温合金为实验材料,采用塑性变形连接的新方法,实现了新型Ni-Co基高温合金的连接。通过OM、EBSD、TEM等分析手段探究了界面的再结晶行为及界面的愈合机制。结果表明,1150℃进行塑性变形连接时,合金的变形抗力小,不易开裂。不同变形量的连接实验表明,在40%的变形量下,合金可以实现界面的完全愈合,其力学性能达到基体同等水平。在塑性变形过程中,界面附近的粗大晶粒首先发生细化,随着变形量的增加,细化的晶粒在连续动态再结晶的辅助作用下,通过界面晶界的迁移消除了原始连接界面,实现界面的愈合。

关键词 Ni-Co基高温合金塑性变形连接动态再结晶    
Abstract

Superalloys with excellent high-temperature resistance and oxidation resistance have been widely used in aviation and energy fields. The new Ni-Co base superalloy is considered a candidate for the next generation of turbine discs due to its higher performance of mechanical properties and microstructure stability at high temperatures. However, tungsten inert gas (TIG) welding, metal inert gas (MIG) welding, and other welding techniques are not suitable for welding the new Ni-Co base superalloy because the Al + Ti content of the alloy reaches 7.5%, while traditional welding techniques (electron beam welding, friction welding, and diffusion welding) also have some disadvantages. For example, friction welding has certain requirements on the shape of the sample, and it is not suitable for welding large-volume alloys. Diffusion welding requires a long heat retention period and a harmful precipitation phase exists at the interface. A new welding method is applied in this study to solve the problem of welding nickel-based superalloy, achieving a better bonding effect. The Gleeble 3500 thermal simulator was used to study the plastic deformation bonding of Ni-Co base superalloys in a temperature range of 1000-1200oC and a strain range of 5%-40% with a strain rate of 0.001 s-1. The recrystallization behavior of the interface was studied by OM, EBSD, and TEM, and the bonding mechanism of the interface was clarified. The results showed that the resistance to deformation of the alloy was low when the plastic deformation bonding was performed at 1150oC, and there was no risk of cracking of the alloy. Plastic deformation bonding experiments with different deformations had shown that the alloy can achieve complete bonding of the interface under the condition of 40% deformation, and its mechanical properties can reach the same level as the matrix. The tensile fracture analysis showed that the fracture profile of the 40% deformed joint was consistent with the base material, showing a ductile fracture pattern. The results of EBSD and TEM showed that the coarse grains near the interface were first refined during the plastic deformation. With the increase of deformation, the refined grain removed the original interface by the migration of the interfacial grain boundaries with the assistance of a continuous dynamics recrystallization process and ultimately led to the bonding of the interface.

Key wordsNi-Co base superalloy    plastic deformation bonding    dynamic recrystallization
收稿日期: 2020-12-07     
ZTFLH:  TG406  
基金资助:国家重点研发计划项目(2018YFA0702900);国家自然科学基金项目(51774265);国家科技重大专项项目(2019ZX06004010);中国科学院2017年度创新交叉团队和中国科学院青年创新促进会项目
作者简介: 孙明月,mysun@imr.ac.cn,主要从事特殊钢与大锻件材料及先进控形控性技术研究
任少飞,男,1993年生,硕士
图1  实验原理示意图(a) schematic of plastic deformation bonding (b, c) schematics and location of tensile specimen processing (unit: mm) (d) dimensions of the tensile test specimen (t—thickness) (unit: mm)
图2  Ni-Co基高温合金铸态组织及均匀化态显微组织的OM像
图3  应变速率为0.001 s-1,不同变形温度下Ni-Co基高温合金显微组织的OM像及其流变应力-应变曲线
图4  塑性变形温度为1150℃,不同变形量下Ni-Co基高温合金显微组织的OM像以及平均晶粒尺寸统计
图5  不同变形量下接头的室温拉伸曲线
图6  不同变形量下接头和母材的拉伸断口形貌
图7  塑性变形温度为1150℃时,不同变形量下界面组织的反极图(IPF)及对应的局部取向差(LAM)图(a, b) 5% (c, d) 10% (e, f) 20% (g, h) 30% (i, j) 40%
图8  塑性变形温度为1150℃,不同变形量下界面组织的取向差分布(a) 5% (b) 10% (c) 20% (d) 30% (e) 40%
图9  变形温度为1150℃,20%变形量下界面组织的TEM像
图10  塑性变形连接界面愈合机制(a) original coarse grains (b, c) grain refinement near the interface (d, e) bulging of the interfacial grains (Fig.10e shows the recrystallization nucleation of interfacial grains) (f) bonding of the interface
1 Lin Y C , Wu X Y , Chen X M , et al . EBSD study of a hot deformed nickel-based superalloy [J]. J. Alloys Compd., 2005, 640: 101
2 Yang X W , Li W Y , Li J L , et al . Finite element modeling of the linear friction welding of GH4169 superalloy [J]. Mater. Des., 2015, 87: 215
3 Chen X M , Lin Y C , When D X , et al . Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation [J]. Mater. Des., 2014, 57: 568
4 Qu J L , Xie J F , Bi Z N , et al . Hot deformation characteristics and dynamic recrystallization mechanism of GH4730 Ni-based superalloy [J]. J. Alloys Compd., 2019, 785: 918
5 Xiang X M , Jiang H , Dong J X , et al . As-cast microstructure characteristic and homogenization of a newly developed hard-deformed Ni-based superalloy GH4975 [J]. Acta Metall. Sin., 2020, 56: 988
5 向雪梅, 江 河, 董建新 等 . 难变形高温合金GH4975的铸态组织及均匀化 [J]. 金属学报, 2020, 56: 988
6 Zhang Y , Li X X , Wei K , et al . Hot Deformation characteristics of novel wrought superalloy GH4975 extruded rod used for 850oC turbine disc [J]. Acta Metall. Sin., 2020, 56: 1401
6 张 勇, 李鑫旭, 韦 康 等 . 850℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究 [J]. 金属学报, 2020, 56: 1401
7 Bi Z N , Qin H L , Dong Z G , et al . Residual stress evolution and its mechanism during the manufacture of superalloy disk forgings [J]. Acta Metall. Sin., 2019, 55: 1160
7 毕中南, 秦海龙, 董志国 等 . 高温合金盘锻件制备过程残余应力的演化规律及机制 [J]. 金属学报, 2019, 55: 1160
8 Cui C Y , Gu Y F , Ping D H , et al . Microstructural evolution and mechanical properties of a Ni-based superalloy, TMW-4 [J]. Metall. Mater. Trans., 2009, 40A: 282
9 Cui C Y , Gu Y F , Yuan Y , et al . Enhanced mechanical properties in a new Ni-Co base superalloy by controlling microstructures [J]. Mater. Sci. Eng., 2011, A528 : 5465
10 Yuan Y , Gu Y F , Zhong Z H , et al . Creep mechanisms of a new Ni-Co-base disc superalloy at an intermediate temperature [J]. J. Microsc., 2012, 248: 34
11 Yuan Y , Gu Y F , Cui C Y , et al . A novel strategy for the design of advanced engineering alloys—Strengthening turbine disk superalloys via twinning structures [J]. Adv. Eng. Mater., 2011, 13: 296
12 Gu Y F , Cui C Y , Yuan Y , et al . Research progress in a high performance cast & wrought superalloy for turbine disc applications [J]. Acta Metall. Sin., 2015, 51: 1191
12 谷月峰, 崔传勇, 袁 勇 等 . 一种高性能航空涡轮盘用铸锻合金的研究进展 [J]. 金属学报, 2015, 51: 1191
13 Ye X , Hua X M , Wang M , et al . Controlling hot cracking in Ni-based Inconel-718 superalloy cast sheets during tungsten inert gas welding [J]. J. Mater. Process. Technol., 2015, 222: 381
14 Han K , Wang H Q , Shen L , et al . Analysis of cracks in the electron beam welded joint of K465 nickel-base superalloy [J]. Vacuum, 2018, 157: 21
15 Osoba L O , Ding R G , Ojo O A . Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy [J]. Mater. Charact., 2012, 65: 93
16 Ravisankar B , Krishnamoorthi J , Ramakrishnan S S , et al . Diffusion bonding of SU 263 [J]. J. Mater. Process. Technol., 2009, 209: 2135
17 Sah I , Kim D , Lee H J , et al . The recovery of tensile ductility in diffusion-bonded Ni-base alloys by post-bond heat treatments [J]. Mater. Des., 2013, 47: 581
18 Zhang G , Chandel R S , Seow H P . Solid state diffusion bonding of Inconel 718 [J]. Sci. Technol. Weld. Joining., 2001, 6: 235
19 Xiong J T , Yuan L , Zhu Y , et al . Diffusion bonding of nickel-based superalloy GH4099 with pure nickel interlayer [J]. J. Mater. Sci., 2019, 54: 6552
20 Uday M B , Ahmad Fauzi M N , Zuhailawati H , et al . Advances in friction welding process: A review [J]. Sci. Technol. Weld. Joining, 2010, 15: 534
21 Xie B J , Sun M Y , Xu B , et al . Dissolution and evolution of interfacial oxides improving the mechanical properties of solid state bonding joints [J]. Mater. Des., 2018, 157: 437
22 Jiang H Y , Sun M Y , Wu M F , et al . Microstructure and properties of 7075 aluminum alloy hot compress bonding joint [J]. Heat Treat. Met., 2020, 45(2): 46
22 江海洋, 孙明月, 吴铭方 等 . 7075铝合金热变形连接接头的组织与性能 [J]. 金属热处理, 2020, 45(2): 46
23 Zhang J Y , Xu B , Tariq N H , et al . Microstructure evolutions and interfacial bonding behavior of Ni-based superalloys during solid state plastic deformation bonding [J]. J. Mater. Sci. Technol., 2020, 46: 1
24 Sun M Y , Xu B , Xie B J , et al . Research advances on homogenization manufacturing of heavy components by metal additive forging [J]. Chin. Sci. Bull., 2020, 65: 3043
24 孙明月, 徐 斌, 谢碧君 等 . 大锻件均质化构筑成形研究进展 [J]. 科学通报, 2020, 65: 3043
25 Zhou L Y , Feng S B , Sun M Y , et al . Interfacial microstructure evolution and bonding mechanisms of 14YWT alloys produced by hot compression bonding [J]. J. Mater. Sci. Technol., 2019, 35: 1671
26 Zhang J Y , Sun M Y , Xu B , et al . Evolution of the interfacial microstructure during the plastic deformation bonding of copper [J]. Mater. Sci. Eng., 2019, A746 : 1
27 Xie B J , Sun M Y , Xu B , et al . Oxidation of stainless steel in vacuum and evolution of surface oxide scales during hot-compression bonding [J]. Corros. Sci., 2019, 147: 41
28 Zhao G D , Yu L X , Qi F , et al . The minor precipitation at the final stage of U720Li solidification [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 518
29 Liu P , Zhang R , Yuan Y , et al . Hot deformation behavior and workability of a Ni-Co based superalloy [J]. J. Alloys Compd., 2020, 83: 154618
30 Liu F F , Chen J Y , Dong J X , et al . The hot deformation behaviors of coarse, fine and mixed grain for Udimet 720Li superalloy [J]. Mater. Sci. Eng., 2016, A651: 102
31 Wu Y S , Liu Z , Qin X Z , et al . Effect of initial state on hot deformation and dynamic recrystallization of Ni-Fe based alloy GH984G for steam boiler applications [J]. J. Alloys Compd., 2019, 795: 370
32 Paggi A , Angella G , Donnini R . Strain induced grain boundary migration effects on grain growth of an austenitic stainless steel during static and metadynamic recrystallization [J]. Mater. Charact., 2015, 107: 174
33 Sakai T . Dynamic recrystallization microstructures under hot working conditions [J]. J. Mater. Process. Technol., 1995, 53: 349
34 Cao Y , Di H S , Zhang J C , et al . Research on dynamic recrystallization behavior of Incoloy 800H [J]. Acta Metall. Sin., 2012, 48: 1175
34 曹 宇, 邸洪双, 张洁岑 等 . 800H合金动态再结晶行为研究 [J]. 金属学报, 2012, 48: 1175
35 Hu G X , Cai X , Rong Y H . Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiao Tong University Press, 2010: 5
35 胡赓祥, 蔡 珣, 戎咏华 . 材料科学基础 [M]. 上海: 上海交通大学出版社, 2010: 5
36 Xie B C , Yu H , Sheng T , et al . DDRX and CDRX of an as-cast nickel-based superalloy during hot compression at γ′ sub-/super-solvus temperatures [J]. J. Alloys Compd., 2019, 803: 16
37 Hu W , Ponge D , Gottstein G . Origin of grain boundary motion during diffusion bonding by hot pressing [J]. Mater. Sci. Eng., 1995, A190: 223
38 Mandal S , Jayalakshmi M , Bhaduri A K . et al . Effect of strain rate on the dynamic recrystallization behavior in a nitrogen-enhanced 316L(N) [J]. Metall. Mater. Trans.,2014, 45A: 5645
39 Bellier S P , Doherty R D . The structure of deformed aluminium and its recrystallization—Investigations with transmission Kossel diffraction [J]. Acta. Metall., 1977, 25: 521
40 Sakai T , Belyakov A , Kaibyshev R , et al . Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions [J]. Prog. Mater. Sci., 2014, 60: 130
41 Zhong X T , Wang L , Liu F . Study on formation mechanism of necklace structure in discontinuous dynamic recrystallization of Incoloy 028 [J]. Acta Metall. Sin., 2018, 54: 969
41 钟茜婷, 王 磊, 刘 峰 . Incoloy 028合金不连续动态再结晶中链状组织形成机理研究 [J]. 金属学报, 2018, 54: 969
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[5] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[6] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[7] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[8] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[9] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[10] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[11] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[12] 邓亚辉,杨银辉,曹建春,钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[13] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[14] 钟茜婷, 王磊, 刘峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究[J]. 金属学报, 2018, 54(7): 969-980.
[15] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.