Please wait a minute...
金属学报  2023, Vol. 59 Issue (4): 567-576    DOI: 10.11900/0412.1961.2022.00554
  研究论文 本期目录 | 过刊浏览 |
组元占比对层状纳米孪晶Cu力学行为的影响
万涛1,2, 程钊1, 卢磊1()
1中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2中国科学技术大学 材料科学与工程学院 沈阳 110016
Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu
WAN Tao1,2, CHENG Zhao1, LU Lei1()
1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
Tao WAN, Zhao CHENG, Lei LU. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. Acta Metall Sin, 2023, 59(4): 567-576.

全文: PDF(2928 KB)   HTML
摘要: 

利用直流电解沉积制备了表层为硬组元、芯部为软组元的3种层状纳米孪晶(LNT) Cu样品,其中软组元占比分别为10%、50%和90%。研究发现:随软组元占比增加,拉伸屈服强度由425 MPa下降至262 MPa,均匀延伸率由5.7%增加至17%。3种LNT Cu的屈服强度均高于利用混合法则计算的平均强度,即表现出明显的额外强化。当组元占比为50%时,LNT Cu在变形过程中的应变局域化被很好地抑制,组元间应变差较小且相互约束作用强,额外强化效应最明显。

关键词 层状纳米孪晶Cu组元占比额外强化应变局域化梯度塑性变形    
Abstract

Laminated metals have the potential for achieving better mechanical properties, such as higher strength, ductility, and work hardening ability. The mechanism that leads to these advances stems from the inhomogeneous plastic deformations between soft and hard components where geometrically necessary dislocations (GNDs) are produced while the two adjacent components are mutually constrained. Many structural factors have already been extensively investigated during the optimization of the laminated structure, such as the effect of layer thickness and the strength differential between components on the overall resulting properties. However, the effect of component composition percentage, an important factor for laminated structures, on the mechanical properties and its underlying mechanism remains elusive. To unravel the effect of component composition percentage on the mechanical properties, we used stable nanotwinned structures as components to build laminated nanotwinned (LNT) Cu materials. Three LNT Cu samples with hard components on the surface layers and soft components in the core layer were designed and prepared by direct-current electrodeposition. The soft component percentages were set as 10%, 50%, and 90%. The mechanical behaviors of LNT Cu were explored by uniaxial tensile tests at room temperature. Yield strengths for all three LNT Cu were higher than that estimated by the rule of mixture, indicating an extra strengthening effect from the LNT structure. The LNT Cu containing 50% soft component (LNT-50%) demonstrated the greatest extra strengthening. Interestingly, full-field strain measurements and microstructure characterizations further indicated that the strain localization of LNT-50% was well suppressed and the lateral strain difference between the soft and hard components was obviously reduced. This indicated that the strong mutual constraint between the two components contributed to the greatest extra strengthening.

Key wordslaminated nanotwinned Cu    component percentage    extra strengthening    strain localization    gradient plastic deformation
收稿日期: 2022-11-01     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目(51931010);国家自然科学基金项目(92163202);国家自然科学基金项目(52001312);中国科学院前沿科学重点研究计划项目(GJHZ2029);中国博士后科学基金(BX20190336);中国博士后科学基金(2019M661150);中国科学院金属研究所创新基金项目(2021-PY02)
通讯作者: 卢 磊,llu@imr.ac.cn,主要从事纳米结构金属材料研究
Corresponding author: LU Lei, professor, Tel: (024)23971939, E-mail: llu@imr.ac.cn
作者简介: 万 涛,男,1995年生,博士生
图1  制备态2种均匀组元纳米孪晶(HNT) Cu的微观结构和晶粒尺寸、孪晶片层厚度,及3种不同组元占比层状纳米孪晶(LNT) Cu微观结构和沿深度方向的硬度分布
图2  HNT Cu和LNT Cu的拉伸工程应力-应变曲线和加工硬化率-真应变曲线
Sampleσy / MPaσuts / MPaδu / %Δσ / σyROM / %
LNT-10%425 ± 12465 ± 125.7 ± 0.72.9 ± 2.9
LNT-50%372 ± 13419 ± 29.9 ± 0.513.4 ± 4
LNT-90%262 ± 9328 ± 317.0 ± 0.98.3 ± 3.7
HNT-434 ± 9501 ± 141.6 ± 0.1-
HNT-221 ± 13281 ± 621.7 ± 1.6
表1  LNT Cu和HNT Cu的室温拉伸性能
图3  LNT Cu拉伸试样和标距段表面散斑示意图,不同拉伸应变下沿x轴方向的应变(εx )分布,拉伸应变5%时的应变分布曲线和应变局域化程度(Δεx )测量示意图,及Δεx 随拉伸应变的变化趋势
图4  LNT Cu拉伸变形前后侧表面高度起伏轮廓和分布曲线以及相对侧向应变(Δεy)分布
图5  3种LNT Cu拉伸试样断口附近硬组元Ⓐ和软组元Ⓓ的微观组织(截面收缩真应变εT ≈ 35%)
1 Zhang X, Misra A, Wang H, et al. Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning [J]. Acta Mater., 2004, 52: 995
doi: 10.1016/j.actamat.2003.10.033
2 Huang C X, Wang Y F, Ma X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate [J]. Mater. Today, 2018, 21: 713
doi: 10.1016/j.mattod.2018.03.006
3 Göken M, Höppel H W. Tailoring nanostructured, graded, and particle-reinforced Al laminates by accumulative roll bonding [J]. Adv. Mater., 2011, 23: 2663
doi: 10.1002/adma.v23.22/23
4 Koseki T, Inoue J, Nambu S. Development of multilayer steels for improved combinations of high strength and high ductility [J]. Mater. Trans., 2014, 55: 227
doi: 10.2320/matertrans.M2013382
5 Huang M, Xu C, Fan G H, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite [J]. Acta Mater., 2018, 153: 235
doi: 10.1016/j.actamat.2018.05.005
6 Wang Y C, Luo X M, Chen L J, et al. Enhancement of shear stability of a Fe-based amorphous alloy using electrodeposited Ni layers [J]. J. Mater. Sci. Technol., 2018, 34: 2283
doi: 10.1016/j.jmst.2018.05.015
7 Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21: 399
8 Fleck N A, Muller G M, Ashby M F, et al. Strain gradient plasticity: Theory and experiment [J]. Acta Metall. Mater., 1994, 42: 475
doi: 10.1016/0956-7151(94)90502-9
9 Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity—I. Theory [J]. J. Mech. Phys. Solids, 1999, 47: 1239
doi: 10.1016/S0022-5096(98)00103-3
10 Zeng Z, Li X Y, Xu D S, et al. Gradient plasticity in gradient nano-grained metals [J]. Extreme Mech. Lett., 2016, 8: 213
doi: 10.1016/j.eml.2015.12.005
11 Kubin L P, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: A few critical issues [J]. Scr. Mater., 2003, 48: 119
doi: 10.1016/S1359-6462(02)00335-4
12 Gao H J, Huang Y G. Geometrically necessary dislocation and size-dependent plasticity [J]. Scr. Mater., 2003, 48: 113
doi: 10.1016/S1359-6462(02)00329-9
13 Cao Z, Cheng Z, Xu W, et al. Effect of work hardening discrepancy on strengthening of laminated Cu/CuZn alloys [J]. J. Mater. Sci. Technol., 2022, 103: 67
doi: 10.1016/j.jmst.2021.06.043
14 Ma X L, Huang C X, Xu W Z, et al. Strain hardening and ductility in a coarse-grain/nanostructure laminate material [J]. Scr. Mater., 2015, 103: 57
doi: 10.1016/j.scriptamat.2015.03.006
15 Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
16 Fleck N A, Ashby M F, Hutchinson J W. The role of geometrically necessary dislocations in giving material strengthening [J]. Scr. Mater., 2003, 48: 179
doi: 10.1016/S1359-6462(02)00338-X
17 Wu X L, Zhu Y T. Gradient and lamellar heterostructures for superior mechanical properties [J]. MRS Bull., 2021, 46: 244
18 Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 7197
doi: 10.1073/pnas.1324069111 pmid: 24799688
19 Beyerlein I J, Mara N A, Carpenter J S, et al. Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation [J]. J. Mater. Res., 2013, 28: 1799
doi: 10.1557/jmr.2013.21
20 Fu E G, Li N, Misra A, et al. Mechanical properties of sputtered Cu/V and Al/Nb multilayer films [J]. Mater. Sci. Eng., 2008, A493: 283
21 Wang Y F, Yang M X, Ma X L, et al. Improved back stress and synergetic strain hardening in coarse-grain/nanostructure laminates [J]. Mater. Sci. Eng., 2018, A727: 113
22 Wan T, Cheng Z, Bu L F, et al. Work hardening discrepancy designing to strengthening gradient nanotwinned Cu [J]. Scr. Mater., 2021, 201: 113975
doi: 10.1016/j.scriptamat.2021.113975
23 Liang F, Tan H F, Zhang B, et al. Maximizing necking-delayed fracture of sandwich-structured Ni/Cu/Ni composites [J]. Scr. Mater., 2017, 134: 28
doi: 10.1016/j.scriptamat.2017.02.032
24 Cuan X Y, Pan J, Cao R Q, et al. Effect of amorphous layer thickness on the tensile behavior of bulk-sized amorphous Ni-P/crystalline Ni laminates [J]. Mater. Lett., 2018, 218: 150
doi: 10.1016/j.matlet.2018.01.164
25 Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces [J]. Acta Mater., 2016, 116: 43
doi: 10.1016/j.actamat.2016.06.023
26 Nizolek T, Beyerlein I J, Mara N A, et al. Tensile behavior and flow stress anisotropy of accumulative roll bonded Cu-Nb nanolaminates [J]. Appl. Phys. Lett., 2016, 108: 051903
27 Misra A, Hirth J P, Hoagland R G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites [J]. Acta Mater., 2005, 53: 4817
doi: 10.1016/j.actamat.2005.06.025
28 Wu X L, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure [J]. Mater. Res. Lett., 2014, 2: 185
doi: 10.1080/21663831.2014.935821
29 Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci., 2006, 51: 427
doi: 10.1016/j.pmatsci.2005.08.003
30 Kwan C C F, Wang Z R. Strain incompatibility and its influence on grain coarsening during cyclic deformation of ARB copper [J]. Philos. Mag., 2013, 93: 1065
doi: 10.1080/14786435.2012.741729
31 Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
32 Lu Q H, You Z S, Huang X X, et al. Dependence of dislocation structure on orientation and slip systems in highly oriented nanotwinned Cu [J]. Acta Mater., 2017, 127: 85
doi: 10.1016/j.actamat.2017.01.016
33 Cheng Z, Jin S, Lu L. Effect of electrolyte temperature on microstructures of direct-current electrodeposited nanotwinned Cu [J]. Acta Metall. Sin., 2018, 54: 428
doi: 10.11900/0412.1961.2017.00208
33 程 钊, 金 帅, 卢 磊. 电解液温度对直流电解沉积纳米孪晶Cu微观结构的影响 [J]. 金属学报, 2018, 54: 428
34 Cheng Z, Lu L. The effect of gradient order on mechanical behaviors of gradient nanotwinned Cu [J]. Scr. Mater., 2019, 164: 130
doi: 10.1016/j.scriptamat.2019.02.006
35 Chassaing E, Wiart R. Epitaxial growth and electrode impedance of copper electrodeposits [J]. Electrochim. Acta, 1984, 29: 649
doi: 10.1016/0013-4686(84)87124-8
36 You Z S, Lu L, Lu K. Tensile behavior of columnar grained Cu with preferentially oriented nanoscale twins [J]. Acta Mater., 2011, 59: 6927
doi: 10.1016/j.actamat.2011.07.044
37 Bai J S, Lu Q H, Lu L. Detwinning behavior induced by local shear strain in nanotwinned Cu [J]. Acta Metall. Sin., 2015, 52: 491
37 白敬胜, 卢秋虹, 卢 磊. 纳米孪晶Cu中局部剪切应变诱导的退孪生行为 [J]. 金属学报, 2015, 52: 491
38 Semiatin S L, Piehler H R. Deformation of sandwich sheet materials in uniaxial tension [J]. Metall. Trans., 1979, 10A: 85
39 Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2021, 9: 1
doi: 10.1080/21663831.2020.1796836
40 Bert C W, Mills E J, Hyler W S. Effect of variation in Poisson's ratio on plastic tensile instability [J]. J. Basic Eng., 1967, 89: 35
doi: 10.1115/1.3609567
41 Sinclair C W, Saada G, Embury J D. Role of internal stresses in co-deformed two-phase materials [J]. Philos. Mag., 2006, 86: 4081
doi: 10.1080/14786430600654438
42 Jing L J, Pan Q S, Long J Z, et al. Effect of volume fraction of gradient nanograined layer on high-cycle fatigue behavior of Cu [J]. Scr. Mater., 2019, 161: 74
doi: 10.1016/j.scriptamat.2018.10.019
43 Li Y S, Zhang Y, Tao N R, et al. Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation [J]. Scr. Mater., 2008, 59: 475
doi: 10.1016/j.scriptamat.2008.04.043
44 Zhang Z, Vajpai S K, Orlov D, et al. Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics [J]. Mater. Sci. Eng., 2014, A598: 106
[1] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.