Please wait a minute...
金属学报  2019, Vol. 55 Issue (5): 611-618    DOI: 10.11900/0412.1961.2018.00504
  本期目录 | 过刊浏览 |
1. 哈尔滨工业大学材料科学与工程学院金属精密热加工国家级重点实验室 哈尔滨 150001
Microstructural Evolution and Mechanism of Solidified TiAl Alloy Applied Electric Current Pulse
Zhanxing CHEN,Hongsheng DING(),Ruirun CHEN,Jingjie GUO,Hengzhi FU
1. National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
全文: PDF(15521 KB)   HTML


关键词 脉冲电流TiAl合金组织演变片层取向    

As a new type of lightweight and high temperature structural material, TiAl alloy has become the most ideal candidate in the fields of aerospace, military and civil products, and it has a good perspective in the industrialization. Refining and improving the microstructure of TiAl alloys has higher theoretical significance and engineering value. In this work, the solidified Ti-48Al-2Cr-2Nb alloy applied electric current pulse is studied, and its microstructural evolution and mechanism are analyzed. The results show that the electric current pulse refines the primary dendrite arm spacing, columnar crystal size and interlamellar spacing of the Ti-48Al-2Cr-2Nb alloy. The primary phase is α without electric current pulse, the angle of the Ti-48Al-2Cr-2Nb alloy that between the lamellar orientation and the growth direction is usually bigger, even perpendicular to the growth direction approximately. The applied electric current pulse causes the dendrite to melt and break, and promotes the occurrence and increase of the primary β phase, the lamellae orientation having a small angle or 45° between the growth direction is further increasing. The electric current pulse reduces the solid-liquid phase free energy and atomic diffusion activation energy, reduces the nucleation barrier and the critical nucleation energy, thereby atomic diffusion and the crystallization nucleation is promoted to a certain extent, the primary dendritic spacing and columnar crystals are remarkably refined. The electric current pulse causes the transformation of the primary phase and its corresponding crystal orientation relationship is the main reason for the change of lamellar orientation.

Key wordselectric current pulse    TiAl alloy    microstructural evolution    lamellar orientation
收稿日期: 2018-11-07     
ZTFLH:  TG113.12  
通讯作者: 丁宏升     E-mail:
Corresponding author: Hongsheng DING     E-mail:
作者简介: 陈占兴,男,1985年生,博士生


陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.
Zhanxing CHEN, Hongsheng DING, Ruirun CHEN, Jingjie GUO, Hengzhi FU. Microstructural Evolution and Mechanism of Solidified TiAl Alloy Applied Electric Current Pulse. Acta Metall Sin, 2019, 55(5): 611-618.

链接本文:      或

Sample No.ip / (mA·mm-2)f / Hz
表1  脉冲电流作用下Ti-48Al-2Cr-2Nb合金凝固实验参数
图1  脉冲电流作用下Ti-48Al-2Cr-2Nb合金柱状枝晶的生长形态
图2  脉冲电流作用下Ti-48Al-2Cr-2Nb合金的一次枝晶臂间距
图3  脉冲电流作用下Ti-48Al-2Cr-2Nb合金的凝固组织
图4  脉冲电流作用下Ti-48Al-2Cr-2Nb合金片层取向的正态分布
图5  脉冲电流影响下的Ti-48Al-2Cr-2Nb合金片层结构
图6  脉冲电流对Ti-48Al-2Cr-2Nb合金片层间距的影响
图7  TiAl合金中不同初生相的晶体生长方向与片层取向的关系
[1] AsaiS. Recent development and prospect of electromagnetic processing of materials[J]. Sci. Technol. Adv. Mater., 2000, 1: 191
[2] AsaiS. Electromagnetic Processing of Materials[M]. Dordrecht: Springer, 2012: 87
[3] WangR Z, QiJ G, WangB, et al. Solidification behavior and crystal growth mechanism of aluminum under electric pulse[J]. J. Mater. Process. Technol., 2016, 237: 235
[4] TangY F, QiuS, MiaoQ, et al. Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields[J]. J. Eur. Ceram. Soc., 2016, 36: 1233
[5] LiC S, HuS D, RenZ M, et al. Effect of the simultaneous application of a high static magnetic field and a low alternating current on grain structure and grain boundary of pure aluminum[J]. J. Mater. Sci. Technol., 2018, 34: 2431
[6] LiY Z, Mangelinck-No?lN, ZimmermannG, et al. Effect of solidification conditions and surface pores on the microstructure and columnar-to-equiaxed transition in solidification under microgravity[J]. J. Alloys Compd., 2018, 749: 344
[7] RuanY, WangQ Q, ChangS Y, et al. Structural evolution and micromechanical properties of ternary Al-Ag-Ge alloy solidified under microgravity condition[J]. Acta Mater., 2017, 141: 456
[8] XuanY, NastacL. The role of ultrasonic cavitation in refining the microstructure of aluminum based nanocomposites during the solidification process[J]. Ultrasonics, 2018, 83: 94
[9] ChenZ X, DingH S, ChenR R, et al. An innovative method for the microstructural modification of TiAl alloy solidified via direct electric current application[J]. J. Mater. Sci. Technol., 2019, 35: 23
[10] LiJ, MaJ H, SongC J, et al. Columnar to equiaxed transition during solidification of small ingot by using electric current pulse[J]. J. Iron Steel Res., Int., 2009, 16: 7
[11] LiJ Y, NiP, WangL, et al. Influence of direct electric current on solidification process of Al-Si alloy[J]. Mater. Sci. Semicond. Process., 2017, 61: 79
[12] YangJ R, ChenR R, GuoJ J, et al. Temperature distribution in bottomless electromagnetic cold crucible applied to directional solidification[J]. Int. J. Heat Mass Transfer, 2016, 100: 131
[13] YangJ R, ChenR R, SuY Q, et al. Optimization of electromagnetic energy in cold crucible used for directional solidification of TiAl alloy[J]. Energy, 2018, 161: 143
[14] ErdelyP, StaronP, MaawadE, et al. Design and control of microstructure and texture by thermomechanical processing of a multi-phase TiAl alloy[J]. Mater. Des., 2017, 131: 286
[15] WangX D, LuoR C, LiuF, et al. Characterization of Gd-rich precipitates in a fully lamellar TiAl alloy[J]. Scr. Mater., 2017, 137: 50
[16] ZhangT B, WuZ E, HuR, et al. Influence of nitrogen on the microstructure and solidification behavior of high Nb containing TiAl alloys[J]. Mater. Des., 2016, 103: 100
[17] ZollingerJ, LapinJ, DalozD, et al. Influence of oxygen on solidification behaviour of cast TiAl-based alloys[J]. Intermetallics, 2007, 15: 1343
[18] JungI S, JangH S, OhM H, et al. Microstructure control of TiAl alloys containing β stabilizers by directional solidification[J]. Mater. Sci. Eng., 2002, A329-331: 13
[19] ChenZ X, DingH S, LiuS Q, et al. Effects of direct current on microstructure and properties of Ti-48Al-2Cr-2Nb alloy[J].Acta Metall. Sin., 2017, 53: 583
[19] (陈占兴, 丁宏升, 刘石球等. 直流电流对Ti-48Al-2Cr-2Nb合金组织和性能的影响 [J]. 金属学报, 2017, 53: 583)
[20] LiX Z, FanJ L, SuY Q, et al. Lamellar orientation and growth direction of α phase in directionally solidified Ti-46Al-0.5W-0.5Si alloy[J]. Intermetallics, 2012, 27: 38
[21] BarnakJ P, SprecherA F, ConradH. Colony (grain) size reduction in eutectic Pb-Sn castings by electroplusing[J]. Scr. Metall. Mater., 1995, 32: 879
[22] ZhaiQ J. Foundamentals of Structure Refinement Technology for Metal Solidification[M]. Beijing: Science Press, 2018: 145
[22] (翟启杰. 金属凝固组织细化技术基础 [M]. 北京: 科学出版社, 2018: 145)
[23] GaoM, HeG H, YangF, et al. Effect of electric current pulse on tensile strength and elongation of casting ZA27 alloy[J]. Mater. Sci. Eng., 2002, A337: 110
[24] NakadaM, ShioharaY, FlemingsM C. Modification of solidification structures by pulse electric discharging[J]. ISIJ Int., 1990, 30: 27
[25] ZhangW, SuiM L, ZhouY Z, et al. Electropulsing-induced evolution of microstructures in materials[J].Acta Metall. Sin., 2003, 39: 1009
[25] (张 伟, 隋曼龄, 周亦胄等. 高密度电脉冲下材料微观结构的演变 [J]. 金属学报, 2003, 39: 1009)
[26] TangJ C, HuangB Y, ZhouK C, et al. Factors affecting the lamellar spacing in two-phase TiAl alloys with fully lamellar microstructures[J]. Mater. Res. Bull., 2001, 36: 1737
[27] LapinJ, Ondrú?L', NazmyM. Directional solidification of intermetallic Ti-46Al-2W-0.5Si alloy in alumina moulds[J]. Intermetallics, 2002, 10: 1019
[28] ClemensH, BartelsA, BystrzanowskiS, et al. Grain refinement in γ-TiAl-based alloys by solid state phase transformations[J]. Intermetallics, 2006, 14: 1380
[29] InuiH, OhM H, NakamuraA, et al. Room-temperature tensile deformation of polysynthetically twinned (PST) crystals of TiAl[J]. Acta Metall. Mater., 1992, 40: 3095
[30] JungI S, OhM H, ParkN J, et al. Lamellar boundary alignment of DS-processed TiAl-W alloys by a solidification procedure[J]. Met. Mater. Int., 2007, 13: 455
[1] 张新房, 闫龙格. 脉冲电流调控金属熔体中的非金属夹杂物[J]. 金属学报, 2020, 56(3): 257-277.
[2] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[3] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[4] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[5] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.
[6] 廖依敏, 丰敏, 陈明辉, 耿哲, 刘阳, 王福会, 朱圣龙. TiAl合金表面搪瓷基复合涂层与多弧离子镀NiCrAlY涂层的抗热腐蚀行为对比研究[J]. 金属学报, 2019, 55(2): 229-237.
[7] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[8] 苏彦庆, 刘桐, 李新中, 陈瑞润, 郭景杰, 傅恒志. 籽晶法定向凝固TiAl基合金片层取向控制[J]. 金属学报, 2018, 54(5): 647-656.
[9] 毛轶哲, 李建国, 封蕾. 573 K高温时效处理的Al-10Mg合金中粗大β(Al3Mg2)相对热压缩组织演化的影响及机理[J]. 金属学报, 2018, 54(10): 1451-1460.
[10] 王永金, 宋仁伯, 宋仁峰. 9Cr18合金半固态触变压缩变形行为及组织演变[J]. 金属学报, 2018, 54(1): 39-46.
[11] 潘宇, 路新, 刘程程, 孙健卓, 佟健博, 徐伟, 曲选辉. Sn对TiAl基合金烧结致密化与力学性能的影响[J]. 金属学报, 2018, 54(1): 93-99.
[12] 李天瑞, 刘国怀, 徐莽, 牛红志, 付天亮, 王昭东, 王国栋. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能[J]. 金属学报, 2017, 53(9): 1055-1064.
[13] 陈占兴,丁宏升,刘石球,陈瑞润,郭景杰,傅恒志. 直流电流对Ti-48Al-2Cr-2Nb合金组织和性能的影响[J]. 金属学报, 2017, 53(5): 583-591.
[14] 王刚,徐磊,崔玉友,杨锐. TiAl预合金粉末热等静压致密化机理及热处理对微观组织的影响*[J]. 金属学报, 2016, 52(9): 1079-1088.
[15] 崔君军,陈礼清,李海智,佟伟平. 等温淬火低合金贝氏体球墨铸铁的回火组织与力学性能*[J]. 金属学报, 2016, 52(7): 778-786.