|
|
镍基单晶高温合金叶片模拟件平台处的枝晶生长和取向演化 |
孙德建,刘林( ),黄太文,张家晨,曹凯莉,张军,苏海军,傅恒志 |
1. 西北工业大学凝固技术国家重点实验室 西安 710072 |
|
Dendrite Growth and Orientation Evolution in the Platform of Simplified Turbine Blade for Nickel-Based Single Crystal Superalloys |
Dejian SUN,Lin LIU( ),Taiwen HUANG,Jiachen ZHANG,Kaili CAO,Jun ZHANG,Haijun SU,Hengzhi FU |
1. State Key Laborotory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China |
引用本文:
孙德建,刘林,黄太文,张家晨,曹凯莉,张军,苏海军,傅恒志. 镍基单晶高温合金叶片模拟件平台处的枝晶生长和取向演化[J]. 金属学报, 2019, 55(5): 619-626.
Dejian SUN,
Lin LIU,
Taiwen HUANG,
Jiachen ZHANG,
Kaili CAO,
Jun ZHANG,
Haijun SU,
Hengzhi FU.
Dendrite Growth and Orientation Evolution in the Platform of Simplified Turbine Blade for Nickel-Based Single Crystal Superalloys[J]. Acta Metall Sin, 2019, 55(5): 619-626.
[1] | ClemensM L, PriceA, BellowsR S. Advanced solidification processing of an industrial gas turbine engine component[J]. JOM, 2003, 55(3): 27 | [2] | PollockT M, MurphyW H. The breakdown of single-crystal solidification in high refractory nickel-base alloys[J]. Metall. Mater. Trans., 1996, 27A: 1081 | [3] | LiY F, LiuL, HuangT W, et al. The formation mechanism, influencing factors and processing control of stray grains in nickel-based single crystal superalloys [A]. Superalloys 2016[C]. Warrendale: TMS, 2016: 293 | [4] | SethB B. Superalloys—The utility gas turbine perspective [A]. Superalloys 2000[C]. Warrendale: TMS, 2000: 3 | [5] | NewellM, DevendraK, JenningsP A, et al. Role of dendrite branching and growth kinetics in the formation of low angle boundaries in Ni-base superalloys[J]. Mater. Sci. Eng., 2005, A412: 307 | [6] | D'SouzaN, NewellM, DevendraK, et al. Formation of low angle boundaries in Ni-based superalloys[J]. Mater. Sci. Eng., 2005, A413: 567 | [7] | NapolitanoR E, SchaeferR J. The convergence-fault mechanism for low-angle boundary formation in single-crystal castings[J]. J. Mater. Sci., 2000, 35: 1641 | [8] | SiredeyN, BoufoussiM, DenisS, et al. Dendritic growth and crystalline quality of nickel-base single grains[J]. J. Cryst. Growth, 1993, 130: 132 | [9] | MaD X. Freckle formation during directional solidification of complex castings of superalloys[J].Acta Metall. Sin., 2016, 52: 426 | [9] | (马德新. 定向凝固的复杂形状高温合金铸件中的雀斑形成 [J]. 金属学报, 2016, 52: 426) | [10] | LiY F, LiuL, HuangT W, et al. Research progress of stray grain formation in the platform of Ni-base single crystal turbine blades[J].Mater. Rev., 2017, 31(5): 118 | [10] | (李亚峰, 刘 林, 黄太文等. 镍基单晶高温合金涡轮叶片缘板杂晶的研究进展 [J]. 材料导报, 2017, 31(5): 118) | [11] | ZhangX L, ZhouY Z, JinT, et al. Study on the tendency of stray grain formation of Ni-based single crystal superalloys[J].Acta Metall. Sin., 2012, 48: 1229 | [11] | (张小丽, 周亦胄, 金 涛等. 镍基单晶高温合金杂晶形成倾向性的研究 [J]. 金属学报, 2012, 48: 1229) | [12] | XuanW D, RenZ M, LiC J. Experimental evidence of the effect of a high magnetic field on the stray grains formation in cross-section change region for Ni-based superalloy during directional solidification[J]. Metall. Mater. Trans., 2015, 46A: 1461 | [13] | De BussacA, GandinC A. Prediction of a process window for the investment casting of dendritic single crystals[J]. Mater. Sci. Eng., 1997, A237: 35 | [14] | MengX B, LiJ G, ChenZ Q, et al. Effect of platform dimension on the dendrite growth and stray grain formation in a Ni-base single-crystal superalloy[J]. Metall. Mater. Trans., 2013, 44A: 1955 | [15] | MaD X, Büehrig-PolaczekA. Application of a heat conductor technique in the production of single-crystal turbine blades[J]. Metall. Mater. Trans., 2009, 40B: 738 | [16] | MengX B, LiJ G, ZhuS Z, et al. Method of stray grain inhibition in the platforms with different dimensions during directional solidification of a Ni-base superalloy[J]. Metall. Mater. Trans., 2014, 45A: 1230 | [17] | YangX L, DongH B, WangW, et al. Microscale simulation of stray grain formation in investment cast turbine blades[J]. Mater. Sci. Eng., 2004, A386: 129 | [18] | SunD J, LiuL, HuangT W, et al. Insight of the dendrite deformation in Ni-based superalloys for increased misorientation along convergent boundaries[J]. Prog. Nat. Sci., 2018, 28: 489 | [19] | AvesonJ W, TennantP A, FossB J, et al. On the origin of sliver defects in single crystal investment castings[J]. Acta Mater., 2013, 61: 5162 | [20] | BogdanowiczW, AlbrechtR, SieniawskiJ, et al. The subgrain structure in turbine blade roots of CMSX-4 superalloy[J]. J. Cryst. Growth, 2014, 401: 418 | [21] | HusseiniN S, KumahD P, YiJ Z, et al. Mapping single-crystal dendritic microstructure and defects in nickel-base superalloys with synchrotron radiation[J]. Acta Mater., 2008, 56: 4715 | [22] | WangW, KermanpurA, LeeP D, et al. Simulation of dendritic growth in the platform region of single crystal superalloy turbine blades[J]. J. Mater. Sci., 2003, 38: 4385 | [23] | MaD X. Development of single crystal solidification technology for production of superalloy turbine blades[J].Acta Metall. Sin., 2015, 51: 1179 | [23] | (马德新. 高温合金叶片单晶凝固技术的新发展 [J]. 金属学报, 2015, 51: 1179) | [24] | WangF, WuZ N, HuangC, et al. Three-dimensional dendrite growth within the shrouds of single crystal blades of a nickel-based superalloy[J]. Metall. Mater. Trans., 2017, 48A: 5924 | [25] | WangN, LiuL, GaoS F, et al. Simulation of grain selection during single crystal casting of a Ni-base superalloy[J]. J. Alloys Compd., 2014, 586: 220 | [26] | LiY F, LiuL, HuangT W, et al. Simulation of stray grain formation in Ni-base single crystal turbine blades fabricated by HRS and LMC techniques[J]. China Foundry, 2017, 14: 75 | [27] | ElliottA J, PollockT M, TinS, et al. Directional solidification of large superalloy castings with radiation and liquid-metal cooling: A comparative assessment[J]. Metall. Mater. Trans., 2004, 35A: 3221 | [28] | WagnerA, ShollockB A, McLeanM. Grain structure development in directional solidification of nickel-base superalloys[J]. Mater. Sci. Eng., 2004, A374: 270 | [29] | MathurH N, PanwisawasC, JonesC N, et al. Nucleation of recrystallisation in castings of single crystal Ni-based superalloys[J]. Acta Mater., 2017, 129: 112 | [30] | BrewsterG, DongH B, GreenN R, et al. Surface segregation during directional solidification of Ni-base superalloys[J]. Metall. Mater. Trans., 2008, 39B: 87 | [31] | DragnevskiK, MullisA M, WalkerD J, et al. Mechanical deformation of dendrites by fluid flow during the solidification of undercooled melts[J]. Acta Mater., 2002, 50: 3743 | [32] | MadisonJ, SpowartJ, RowenhorstD, et al. Modeling fluid flow in three-dimensional single crystal dendritic structures[J]. Acta Mater., 2010, 58: 2864 | [33] | PillingJ, HellawellA. Mechanical deformation of dendrites by fluid flow[J]. Metall. Mater. Trans., 1996, 27A: 229 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|