Please wait a minute...
金属学报  2019, Vol. 55 Issue (5): 619-626    DOI: 10.11900/0412.1961.2018.00426
  本期目录 | 过刊浏览 |
镍基单晶高温合金叶片模拟件平台处的枝晶生长和取向演化
孙德建,刘林(),黄太文,张家晨,曹凯莉,张军,苏海军,傅恒志
1. 西北工业大学凝固技术国家重点实验室 西安 710072
Dendrite Growth and Orientation Evolution in the Platform of Simplified Turbine Blade for Nickel-Based Single Crystal Superalloys
Dejian SUN,Lin LIU(),Taiwen HUANG,Jiachen ZHANG,Kaili CAO,Jun ZHANG,Haijun SU,Hengzhi FU
1. State Key Laborotory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

孙德建,刘林,黄太文,张家晨,曹凯莉,张军,苏海军,傅恒志. 镍基单晶高温合金叶片模拟件平台处的枝晶生长和取向演化[J]. 金属学报, 2019, 55(5): 619-626.
Dejian SUN, Lin LIU, Taiwen HUANG, Jiachen ZHANG, Kaili CAO, Jun ZHANG, Haijun SU, Hengzhi FU. Dendrite Growth and Orientation Evolution in the Platform of Simplified Turbine Blade for Nickel-Based Single Crystal Superalloys[J]. Acta Metall Sin, 2019, 55(5): 619-626.

全文: PDF(15431 KB)   HTML
摘要: 

制备了带平台的DD403合金变截面单晶铸件,分析了不同抽拉速率下平台区域的枝晶生长和取向演化。结果表明,平台底面由3种类型的区间构成:叶身区、二次枝晶区、平台边缘枝晶的“回路式”生长区。在平台边缘枝晶的“回路式”生长区与二次枝晶区之间的枝晶汇聚界面上,两侧枝晶的取向差由一侧向另一侧逐渐增大。随着抽拉速率的增大,枝晶汇聚界面上的取向差增大,其成为大角度晶界的倾向性增强,且枝晶偏转是枝晶汇聚界面上大角度晶界形成的主要原因。与晶粒间大角度晶界和亚晶粒间小角度晶界上恒定的取向差不同,枝晶汇聚界面上大角度晶界与小角度晶界的取向差是变化的。

关键词 单晶高温合金枝晶生长枝晶偏转取向演化大角度晶界    
Abstract

Ni-based single crystal (SX) superalloys are widely used in key hot section parts of advanced aero engine and industrial gas turbines (IGTs) because of their superior mechanical performance at high temperature. During directional solidification process of SX blades, high angle grain boundaries that degrade the creep and fatigue properties significantly might be highly likely to occur in the platform region, thus the analysis of multi-influencing factors, such as platform dimension, withdrawal rate and seed orientation, need to be studied. However, most of these works are conducted from the perspective of heterogeneous nucleation induced by the extreme concave shape of liquid-solid interface, and there is rare report concerning that whether dendrite deformation could also induce the high angle grain boundaries. Therefore, in the present work, the SX castings with three platforms were directionally solidified in a Bridgman-furnace, to investigate dendrite growth and the associated orientation evolution. It was observed that the whole platform consisted of three types of regions: blade body, secondary dendrite spread zone, and the "circuit-like" dendrite growth zone. The convergent boundaries of dendrite arms (CBDAs) were formed between secondary dendrite spread zone and the "circuit-like" dendrite growth zone. With increasing withdrawal rate, the area of "circuit-like" dendrite growth zone was increased, and the area of secondary dendrite spread zone was reduced. Moreover, the monotonically increased misorientation angle along CBDAs as a result of the dendrite deformation around platform edge was identified. As withdrawal rate increased, the misorientation angle along CBDAs was increased, and thus the tendency of high angle grain boundary formation on the CBDAs was enhanced. Unlike the nearly constant misorientation angle of the high angle grain boundary between grains and the low angle grain boundary between subgrains, the misorientation angle of the high angle grain boundary and low angle grain boundary formed on the CBDAs varied regularly.

Key wordssingle crystal superalloy    dendrite growth    dendrite deformation    orientation evolution    high angle grain boundary
收稿日期: 2018-09-10     
ZTFLH:  TG21  
基金资助:国家自然科学基金项目(51331005);国家自然科学基金项目(51631008);国家自然科学基金项目(51690163);国家自然科学基金项目(51771148);国家重点研发计划项目(2016YFB0701400);国家重点研发计划项目(2017YFB0702900)
作者简介: 孙德建,男,1985年生,博士生
图1  铸件的示意图及平台尺寸图
图2  平台3底面的枝晶形貌
图3  不同抽拉速率下平台底面的枝晶形貌
图4  平台3底面温度场演化
图5  平台3底面枝晶汇聚界面处的取向演化
图6  平台3底面枝晶汇聚界面处的枝晶形貌和取向演化
图7  枝晶汇聚界面上取向演化示意图
图8  平台底面凝固时的温度分布及变形量分布图
[1] ClemensM L, PriceA, BellowsR S. Advanced solidification processing of an industrial gas turbine engine component[J]. JOM, 2003, 55(3): 27
[2] PollockT M, MurphyW H. The breakdown of single-crystal solidification in high refractory nickel-base alloys[J]. Metall. Mater. Trans., 1996, 27A: 1081
[3] LiY F, LiuL, HuangT W, et al. The formation mechanism, influencing factors and processing control of stray grains in nickel-based single crystal superalloys [A]. Superalloys 2016[C]. Warrendale: TMS, 2016: 293
[4] SethB B. Superalloys—The utility gas turbine perspective [A]. Superalloys 2000[C]. Warrendale: TMS, 2000: 3
[5] NewellM, DevendraK, JenningsP A, et al. Role of dendrite branching and growth kinetics in the formation of low angle boundaries in Ni-base superalloys[J]. Mater. Sci. Eng., 2005, A412: 307
[6] D'SouzaN, NewellM, DevendraK, et al. Formation of low angle boundaries in Ni-based superalloys[J]. Mater. Sci. Eng., 2005, A413: 567
[7] NapolitanoR E, SchaeferR J. The convergence-fault mechanism for low-angle boundary formation in single-crystal castings[J]. J. Mater. Sci., 2000, 35: 1641
[8] SiredeyN, BoufoussiM, DenisS, et al. Dendritic growth and crystalline quality of nickel-base single grains[J]. J. Cryst. Growth, 1993, 130: 132
[9] MaD X. Freckle formation during directional solidification of complex castings of superalloys[J].Acta Metall. Sin., 2016, 52: 426
[9] (马德新. 定向凝固的复杂形状高温合金铸件中的雀斑形成 [J]. 金属学报, 2016, 52: 426)
[10] LiY F, LiuL, HuangT W, et al. Research progress of stray grain formation in the platform of Ni-base single crystal turbine blades[J].Mater. Rev., 2017, 31(5): 118
[10] (李亚峰, 刘 林, 黄太文等. 镍基单晶高温合金涡轮叶片缘板杂晶的研究进展 [J]. 材料导报, 2017, 31(5): 118)
[11] ZhangX L, ZhouY Z, JinT, et al. Study on the tendency of stray grain formation of Ni-based single crystal superalloys[J].Acta Metall. Sin., 2012, 48: 1229
[11] (张小丽, 周亦胄, 金 涛等. 镍基单晶高温合金杂晶形成倾向性的研究 [J]. 金属学报, 2012, 48: 1229)
[12] XuanW D, RenZ M, LiC J. Experimental evidence of the effect of a high magnetic field on the stray grains formation in cross-section change region for Ni-based superalloy during directional solidification[J]. Metall. Mater. Trans., 2015, 46A: 1461
[13] De BussacA, GandinC A. Prediction of a process window for the investment casting of dendritic single crystals[J]. Mater. Sci. Eng., 1997, A237: 35
[14] MengX B, LiJ G, ChenZ Q, et al. Effect of platform dimension on the dendrite growth and stray grain formation in a Ni-base single-crystal superalloy[J]. Metall. Mater. Trans., 2013, 44A: 1955
[15] MaD X, Büehrig-PolaczekA. Application of a heat conductor technique in the production of single-crystal turbine blades[J]. Metall. Mater. Trans., 2009, 40B: 738
[16] MengX B, LiJ G, ZhuS Z, et al. Method of stray grain inhibition in the platforms with different dimensions during directional solidification of a Ni-base superalloy[J]. Metall. Mater. Trans., 2014, 45A: 1230
[17] YangX L, DongH B, WangW, et al. Microscale simulation of stray grain formation in investment cast turbine blades[J]. Mater. Sci. Eng., 2004, A386: 129
[18] SunD J, LiuL, HuangT W, et al. Insight of the dendrite deformation in Ni-based superalloys for increased misorientation along convergent boundaries[J]. Prog. Nat. Sci., 2018, 28: 489
[19] AvesonJ W, TennantP A, FossB J, et al. On the origin of sliver defects in single crystal investment castings[J]. Acta Mater., 2013, 61: 5162
[20] BogdanowiczW, AlbrechtR, SieniawskiJ, et al. The subgrain structure in turbine blade roots of CMSX-4 superalloy[J]. J. Cryst. Growth, 2014, 401: 418
[21] HusseiniN S, KumahD P, YiJ Z, et al. Mapping single-crystal dendritic microstructure and defects in nickel-base superalloys with synchrotron radiation[J]. Acta Mater., 2008, 56: 4715
[22] WangW, KermanpurA, LeeP D, et al. Simulation of dendritic growth in the platform region of single crystal superalloy turbine blades[J]. J. Mater. Sci., 2003, 38: 4385
[23] MaD X. Development of single crystal solidification technology for production of superalloy turbine blades[J].Acta Metall. Sin., 2015, 51: 1179
[23] (马德新. 高温合金叶片单晶凝固技术的新发展 [J]. 金属学报, 2015, 51: 1179)
[24] WangF, WuZ N, HuangC, et al. Three-dimensional dendrite growth within the shrouds of single crystal blades of a nickel-based superalloy[J]. Metall. Mater. Trans., 2017, 48A: 5924
[25] WangN, LiuL, GaoS F, et al. Simulation of grain selection during single crystal casting of a Ni-base superalloy[J]. J. Alloys Compd., 2014, 586: 220
[26] LiY F, LiuL, HuangT W, et al. Simulation of stray grain formation in Ni-base single crystal turbine blades fabricated by HRS and LMC techniques[J]. China Foundry, 2017, 14: 75
[27] ElliottA J, PollockT M, TinS, et al. Directional solidification of large superalloy castings with radiation and liquid-metal cooling: A comparative assessment[J]. Metall. Mater. Trans., 2004, 35A: 3221
[28] WagnerA, ShollockB A, McLeanM. Grain structure development in directional solidification of nickel-base superalloys[J]. Mater. Sci. Eng., 2004, A374: 270
[29] MathurH N, PanwisawasC, JonesC N, et al. Nucleation of recrystallisation in castings of single crystal Ni-based superalloys[J]. Acta Mater., 2017, 129: 112
[30] BrewsterG, DongH B, GreenN R, et al. Surface segregation during directional solidification of Ni-base superalloys[J]. Metall. Mater. Trans., 2008, 39B: 87
[31] DragnevskiK, MullisA M, WalkerD J, et al. Mechanical deformation of dendrites by fluid flow during the solidification of undercooled melts[J]. Acta Mater., 2002, 50: 3743
[32] MadisonJ, SpowartJ, RowenhorstD, et al. Modeling fluid flow in three-dimensional single crystal dendritic structures[J]. Acta Mater., 2010, 58: 2864
[33] PillingJ, HellawellA. Mechanical deformation of dendrites by fluid flow[J]. Metall. Mater. Trans., 1996, 27A: 229
[1] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[6] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[7] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[8] 李文文, 陈波, 熊华平, 尚泳来, 毛唯, 程耀永. 第二代单晶高温合金DD6高性能钎焊接头的组织及力学性能[J]. 金属学报, 2021, 57(8): 959-966.
[9] 王迪, 王栋, 谢光, 王莉, 董加胜, 陈立佳. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J]. 金属学报, 2021, 57(6): 780-790.
[10] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[11] 张少华, 谢光, 董加胜, 楼琅洪. 单晶高温合金共晶溶解行为的差热分析[J]. 金属学报, 2021, 57(12): 1559-1566.
[12] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
[13] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[14] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[15] 赵旭,孙元,侯星宇,张洪宇,周亦胄,丁雨田. 取向偏差对镍基单晶高温合金钎焊接头组织与力学性能的影响[J]. 金属学报, 2020, 56(2): 171-181.