Please wait a minute...
金属学报  2023, Vol. 59 Issue (1): 136-146    DOI: 10.11900/0412.1961.2021.00600
  研究论文 本期目录 | 过刊浏览 |
激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响
方远志1, 戴国庆1, 郭艳华1, 孙中刚1(), 刘红兵2, 袁秦峰3
1.南京工业大学 材料科学与工程学院 新材料研究院 南京 210009
2.上海工程技术大学 材料工程学院 上海 201620
3.浙江申吉钛业股份有限公司 湖州 313306
Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys
FANG Yuanzhi1, DAI Guoqing1, GUO Yanhua1, SUN Zhonggang1(), LIU Hongbing2, YUAN Qinfeng3
1.Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
2.School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
3.Zhejiang Shenji Titanium Industry Co., Ltd., Huzhou 313306, China
引用本文:

方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
Yuanzhi FANG, Guoqing DAI, Yanhua GUO, Zhonggang SUN, Hongbing LIU, Qinfeng YUAN. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. Acta Metall Sin, 2023, 59(1): 136-146.

全文: PDF(4786 KB)   HTML
摘要: 

针对激光熔化沉积冶金组织与缺陷,借鉴激光摆动焊接技术,提出一种激光摆动送粉增材制造TC4钛合金工艺,借助激光原位摆动改变熔池运动轨迹进而影响温度梯度和凝固速率,改善增材制造钛合金的微观组织。利用OM、SEM、EBSD和Vickers硬度计研究了激光摆动送粉增材制造工艺对TC4钛合金微观组织演变及力学性能的影响。结果表明,无摆动激光熔化沉积实验的最佳工艺参数为:激光功率1000 W,扫描速率8 mm/s,送粉速率6.92 g/min;直线型激光摆动的最佳工艺参数为:摆动频率200 Hz,摆动幅度1.5 mm。直线型激光摆动对熔池形貌改善显著,气孔和裂纹等缺陷较少,柱状晶数量和尺寸均有所减小,并且晶粒出现了等轴化的现象。相比无摆动样品,激光摆动后Ti-6Al-4V合金单道区域平均晶粒尺寸从5.20 μm减小到4.37 μm;硬度从418.00 HV提升到428.75 HV。

关键词 增材制造激光熔化沉积激光摆动组织演变    
Abstract

Laser melting deposition (LMD) combines the laser cladding and rapid prototyping manufacturing technologies, and can be used for swift prototyping of complex parts with excellent comprehensive properties. However, due to its unique metallurgical conditions, it is easy to develop penetrating columnar crystals and coarse primary grains along the building direction. This remarkably reduces the mechanical properties of the alloy. The root cause of this issue can be traced back to the thermodynamic and dynamic metallurgical processes. Thus, this study proposes an oscillating laser melting deposition (OLMD) based on laser oscillating welding technology, and aims to elucidate the metallurgical structure and defects of laser melt deposition. OLMD modifies the motion trajectory of the molten pool using a laser in situ oscillation, and directly impacts the temperature gradient and solidification rate, thus improving the microstructure of titanium alloy by LMD. Furthermore, the microstructure evolution and mechanical properties of TC4 titanium alloy produced using OLMD were studied using OM, SEM, EBSD, and a Vickers hardness tester. The results indicate that the optimum process parameters of laser melting deposition without oscillation are as follows: the laser power is 1000 W, scanning rate is 8 mm/s, and powder feeding rate is 6.92 g/min. The optimum technological parameters of linear oscillation are as follows: the frequency is 200 Hz and the oscillation amplitude is 1.5 mm. Addition of linear laser oscillation considerably improved the morphology of the molten pool, and defects such as porosity and cracks were not observed. The overall number and size of columnar crystals reduced, and the grains were equiaxed. When compared to the sample without oscillation, the average grain size of Ti-6Al-4V alloy with linear oscillation decreased from 5.20 μm to 4.37 μm, while hardness increased from 418.00 HV to 428.75 HV.

Key wordsadditive manufacturing    laser melting deposition    laser oscillation    microstructure evolution
收稿日期: 2021-12-31     
ZTFLH:  TG665  
基金资助:国家自然科学基金项目(51875274);浙江省重点研发计划项目(2021C01085);江苏高校优势学科建设工程项目
作者简介: 方远志,男,1997年生,硕士生
Sample No.P / WVs / (mm·s-1)Vp / (g·min-1)
180064.62
280085.77
3800106.92
4100065.77
5100086.92
61000104.62
7130066.92
8130084.62
91300105.77
表1  无激光摆动单道试样的工艺参数
图1  激光摆动送粉增材制造示意图
Sample No.f / HzA / mm
L11500.5
L21501.0
L31501.5
L41502.0
L52000.5
L62001.0
L72001.5
L82002.0
L92500.5
L102501.0
L112501.5
L122502.0
表2  直线型激光摆动单道试样的工艺参数
图2  无激光摆动单道试样Nos.1~9的宏观形貌和横截面OM像
Sample No.H / mmD / mmW / mm
10.3731.2163.357
20.4121.1043.184
30.4670.9872.973
40.5541.2953.704
50.5641.1953.574
60.3311.2013.390
70.6661.5384.190
80.4191.4754.191
90.4881.3033.802
表3  不同工艺参数下无激光摆动单道试样的熔池尺寸
图3  直线型激光摆动单道试样Nos.L1~L12的宏观形貌和横截面OM像
图4  不同激光摆动频率和摆动幅度下直线型激光摆动单道试样Nos.L1~L12的纵截面OM像
图5  不同激光摆动频率下直线型激光摆动单道试样的熔池尺寸
图6  最佳工艺参数下的无激光摆动和直线型激光摆动单道试样的OM像
图7  无激光摆动和直线型激光摆动搭接试样的OM像
图8  无激光摆动激光熔化沉积搭接试样的EBSD分析
图9  直线型激光摆动搭接试样的EBSD分析
图10  无激光摆动和直线型激光摆动下Ti-6Al-4V合金的Vickers硬度
1 DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components-process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
2 Oliveira J P, Santos T G, Miranda R M. Revisiting fundamental welding concepts to improve additive manufacturing: From theory to practice [J]. Prog. Mater. Sci., 2020, 107: 100590
doi: 10.1016/j.pmatsci.2019.100590
3 Akbari M, Kovacevic R. An investigation on mechanical and microstructural properties of 316LSi parts fabricated by a robotized laser/wire direct metal deposition system [J]. Addit. Manufactur., 2018, 23: 487
4 Murray A K, Isik T, Ortalan V, et al. Two-component additive manufacturing of nanothermite structures via reactive inkjet printing [J]. J. Appl. Phys., 2017, 122: 184901
doi: 10.1063/1.4999800
5 Günther J, Krewerth D, Lippmann T, et al. Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime [J]. Int. J. Fatigue, 2017, 94: 236
doi: 10.1016/j.ijfatigue.2016.05.018
6 Kusuma C. The effect of laser power and scan speed on melt pool characteristics of pure titanium and Ti-6Al-4V alloy for selective laser melting [D]. Dayton: Wright State University, 2016
7 Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys [J]. Nature, 2019, 576: 91
doi: 10.1038/s41586-019-1783-1
8 Wang J, Lin X, Li J Q, et al. A study on obtaining equiaxed prior-β grains of wire and arc additive manufactured Ti-6Al-4V [J]. Mater. Sci. Eng., 2020, A772: 138703
9 Zhirnov I V, Podrabinnik P A, Okunkova A A, et al. Laser beam profiling: Experimental study of its influence on single-track formation by selective laser melting [J]. Mech. Ind., 2015, 16: 709
10 Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review [J]. Mater. Des., 2019, 164: 107552
doi: 10.1016/j.matdes.2018.107552
11 Fayazfar H, Salarian M, Rogalsky A, et al. A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties [J]. Mater. Des., 2018, 144: 98
doi: 10.1016/j.matdes.2018.02.018
12 Ngo T D, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges [J]. Composites, 2018, 143B: 172
13 Martin A A, Calta N P, Khairallah S A, et al. Dynamics of pore formation during laser powder bed fusion additive manufacturing [J]. Nat. Commun., 2019, 10: 1987
doi: 10.1038/s41467-019-10009-2 pmid: 31040270
14 Yu H Q, Zhu M Y. Effect of electromagnetic stirring in mold on the macroscopic quality of high carbon steel billet [J]. Acta Metall. Sin. (Engl. Lett.), 2009, 22: 461
doi: 10.1016/S1006-7191(08)60124-6
15 Jiang Z G, Chen X, Li H, et al. Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy [J]. Mater. Des., 2020, 186: 108195
doi: 10.1016/j.matdes.2019.108195
16 Qiu C L, Ravi G A, Dance C, et al. Fabrication of large Ti-6Al-4V structures by direct laser deposition [J]. J. Alloys Compd., 2015, 629: 351
doi: 10.1016/j.jallcom.2014.12.234
17 Xu W, Lui E W, Pateras A, et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance [J]. Acta Mater., 2017, 125: 390
doi: 10.1016/j.actamat.2016.12.027
18 Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition [J]. Acta Mater., 2015, 85: 74
doi: 10.1016/j.actamat.2014.11.028
19 Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing [J]. Acta Mater., 2015, 87: 309
doi: 10.1016/j.actamat.2014.12.054
20 Yuan D, Shao S Q, Guo C H, et al. Grain refining of Ti-6Al-4V alloy fabricated by laser and wire additive manufacturing assisted with ultrasonic vibration [J]. Ultrason. Sonochem., 2021, 73: 105472
doi: 10.1016/j.ultsonch.2021.105472
21 Huang W C, Chuang C S, Lin C C, et al. Microstructure-controllable laser additive manufacturing process for metal products [J]. Phys. Proced., 2014, 56: 58
doi: 10.1016/j.phpro.2014.08.096
22 Meng X, Min J, Sun Z G, et al. Columnar to equiaxed grain transition of laser deposited Ti6Al4V using nano-sized B4C particles [J]. Composites, 2021, 212B: 108667
23 Choi K D, Ahn Y N, Kim C. Weld strength improvement for Al alloy by using laser weaving method [J]. J Laser Appl., 2010, 22(3): 116
doi: 10.2351/1.3499456
24 Cai C, Li L Q, Chen X Y, et al. Study on laser-MAG hybrid weaving welding characteristics for high-strength steel [J]. J. Laser App., 2016, 28: 022401
25 Zhang X, Chen W, Bao G, et al. Suppression of porosity in beam weaving laser welding [J]. Sci. Technol. Weld. Join., 2004, 9: 374
doi: 10.1179/136217104225021625
26 Gong M C, Meng Y F, Zhang S, et al. Laser-arc hybrid additive manufacturing of stainless steel with beam oscillation [J]. Addit. Manuf., 2020, 33: 101180
27 Gusarov A V, Malakhova-Ziablova I S, Pavlov M D. Thermoelastic residual stresses and deformations at laser treatment [J]. Phys. Procedia., 2013, 41: 896
doi: 10.1016/j.phpro.2013.03.164
28 Tan X P, Kok Y, Tan Y J, et al. Graded microstructure and mechanical properties of additive manufactured Ti-6Al-4V via electron beam melting [J]. Acta Mater., 2015, 97: 1
doi: 10.1016/j.actamat.2015.06.036
29 Pantleon W. Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction [J]. Scr. Mater., 2008, 58: 994
doi: 10.1016/j.scriptamat.2008.01.050
30 Zhang C, Li X W, Gao M. Effects of circular oscillating beam on heat transfer and melt flow of laser melting pool [J]. J. Mater. Res. Technol., 2020, 9: 9271
doi: 10.1016/j.jmrt.2020.06.030
31 Wang T, Zhu Y Y, Zhang S Q, et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing [J]. J. Alloys Compd., 2015, 632: 505
doi: 10.1016/j.jallcom.2015.01.256
32 Xia Y L, Chen H N, Liang X D, et al. Circular oscillating laser melting deposition of nickel-based superalloy reinforced by WC: Microstructure, wear resistance and electrochemical properties [J]. J. Manuf. Processes, 2021, 68: 1694
doi: 10.1016/j.jmapro.2021.06.074
33 Liang Z L, Sun Z G, Zhang W S, et al. The effect of heat treatment on microstructure evolution and tensile properties of selective laser melted Ti6Al4V alloy [J]. J. Alloys Compd., 2019, 782: 1041
doi: 10.1016/j.jallcom.2018.12.051
34 Xiao H, Cheng M P, Song L J. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60: 216
doi: 10.1016/j.jmst.2020.04.043
[1] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[5] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[6] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[7] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[8] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[9] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[10] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[11] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[12] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[13] 宋波, 张金良, 章媛洁, 胡凯, 方儒轩, 姜鑫, 张莘茹, 吴祖胜, 史玉升. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59(1): 1-15.
[14] 张百成, 张文龙, 曲选辉. 基于高通量制备的增材制造材料成分设计[J]. 金属学报, 2023, 59(1): 75-86.
[15] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.