|
|
激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响 |
方远志1, 戴国庆1, 郭艳华1, 孙中刚1( ), 刘红兵2, 袁秦峰3 |
1.南京工业大学 材料科学与工程学院 新材料研究院 南京 210009 2.上海工程技术大学 材料工程学院 上海 201620 3.浙江申吉钛业股份有限公司 湖州 313306 |
|
Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys |
FANG Yuanzhi1, DAI Guoqing1, GUO Yanhua1, SUN Zhonggang1( ), LIU Hongbing2, YUAN Qinfeng3 |
1.Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China 2.School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China 3.Zhejiang Shenji Titanium Industry Co., Ltd., Huzhou 313306, China |
引用本文:
方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
Yuanzhi FANG,
Guoqing DAI,
Yanhua GUO,
Zhonggang SUN,
Hongbing LIU,
Qinfeng YUAN.
Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. Acta Metall Sin, 2023, 59(1): 136-146.
1 |
DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components-process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
|
2 |
Oliveira J P, Santos T G, Miranda R M. Revisiting fundamental welding concepts to improve additive manufacturing: From theory to practice [J]. Prog. Mater. Sci., 2020, 107: 100590
doi: 10.1016/j.pmatsci.2019.100590
|
3 |
Akbari M, Kovacevic R. An investigation on mechanical and microstructural properties of 316LSi parts fabricated by a robotized laser/wire direct metal deposition system [J]. Addit. Manufactur., 2018, 23: 487
|
4 |
Murray A K, Isik T, Ortalan V, et al. Two-component additive manufacturing of nanothermite structures via reactive inkjet printing [J]. J. Appl. Phys., 2017, 122: 184901
doi: 10.1063/1.4999800
|
5 |
Günther J, Krewerth D, Lippmann T, et al. Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime [J]. Int. J. Fatigue, 2017, 94: 236
doi: 10.1016/j.ijfatigue.2016.05.018
|
6 |
Kusuma C. The effect of laser power and scan speed on melt pool characteristics of pure titanium and Ti-6Al-4V alloy for selective laser melting [D]. Dayton: Wright State University, 2016
|
7 |
Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys [J]. Nature, 2019, 576: 91
doi: 10.1038/s41586-019-1783-1
|
8 |
Wang J, Lin X, Li J Q, et al. A study on obtaining equiaxed prior-β grains of wire and arc additive manufactured Ti-6Al-4V [J]. Mater. Sci. Eng., 2020, A772: 138703
|
9 |
Zhirnov I V, Podrabinnik P A, Okunkova A A, et al. Laser beam profiling: Experimental study of its influence on single-track formation by selective laser melting [J]. Mech. Ind., 2015, 16: 709
|
10 |
Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review [J]. Mater. Des., 2019, 164: 107552
doi: 10.1016/j.matdes.2018.107552
|
11 |
Fayazfar H, Salarian M, Rogalsky A, et al. A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties [J]. Mater. Des., 2018, 144: 98
doi: 10.1016/j.matdes.2018.02.018
|
12 |
Ngo T D, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges [J]. Composites, 2018, 143B: 172
|
13 |
Martin A A, Calta N P, Khairallah S A, et al. Dynamics of pore formation during laser powder bed fusion additive manufacturing [J]. Nat. Commun., 2019, 10: 1987
doi: 10.1038/s41467-019-10009-2
pmid: 31040270
|
14 |
Yu H Q, Zhu M Y. Effect of electromagnetic stirring in mold on the macroscopic quality of high carbon steel billet [J]. Acta Metall. Sin. (Engl. Lett.), 2009, 22: 461
doi: 10.1016/S1006-7191(08)60124-6
|
15 |
Jiang Z G, Chen X, Li H, et al. Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy [J]. Mater. Des., 2020, 186: 108195
doi: 10.1016/j.matdes.2019.108195
|
16 |
Qiu C L, Ravi G A, Dance C, et al. Fabrication of large Ti-6Al-4V structures by direct laser deposition [J]. J. Alloys Compd., 2015, 629: 351
doi: 10.1016/j.jallcom.2014.12.234
|
17 |
Xu W, Lui E W, Pateras A, et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance [J]. Acta Mater., 2017, 125: 390
doi: 10.1016/j.actamat.2016.12.027
|
18 |
Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition [J]. Acta Mater., 2015, 85: 74
doi: 10.1016/j.actamat.2014.11.028
|
19 |
Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing [J]. Acta Mater., 2015, 87: 309
doi: 10.1016/j.actamat.2014.12.054
|
20 |
Yuan D, Shao S Q, Guo C H, et al. Grain refining of Ti-6Al-4V alloy fabricated by laser and wire additive manufacturing assisted with ultrasonic vibration [J]. Ultrason. Sonochem., 2021, 73: 105472
doi: 10.1016/j.ultsonch.2021.105472
|
21 |
Huang W C, Chuang C S, Lin C C, et al. Microstructure-controllable laser additive manufacturing process for metal products [J]. Phys. Proced., 2014, 56: 58
doi: 10.1016/j.phpro.2014.08.096
|
22 |
Meng X, Min J, Sun Z G, et al. Columnar to equiaxed grain transition of laser deposited Ti6Al4V using nano-sized B4C particles [J]. Composites, 2021, 212B: 108667
|
23 |
Choi K D, Ahn Y N, Kim C. Weld strength improvement for Al alloy by using laser weaving method [J]. J Laser Appl., 2010, 22(3): 116
doi: 10.2351/1.3499456
|
24 |
Cai C, Li L Q, Chen X Y, et al. Study on laser-MAG hybrid weaving welding characteristics for high-strength steel [J]. J. Laser App., 2016, 28: 022401
|
25 |
Zhang X, Chen W, Bao G, et al. Suppression of porosity in beam weaving laser welding [J]. Sci. Technol. Weld. Join., 2004, 9: 374
doi: 10.1179/136217104225021625
|
26 |
Gong M C, Meng Y F, Zhang S, et al. Laser-arc hybrid additive manufacturing of stainless steel with beam oscillation [J]. Addit. Manuf., 2020, 33: 101180
|
27 |
Gusarov A V, Malakhova-Ziablova I S, Pavlov M D. Thermoelastic residual stresses and deformations at laser treatment [J]. Phys. Procedia., 2013, 41: 896
doi: 10.1016/j.phpro.2013.03.164
|
28 |
Tan X P, Kok Y, Tan Y J, et al. Graded microstructure and mechanical properties of additive manufactured Ti-6Al-4V via electron beam melting [J]. Acta Mater., 2015, 97: 1
doi: 10.1016/j.actamat.2015.06.036
|
29 |
Pantleon W. Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction [J]. Scr. Mater., 2008, 58: 994
doi: 10.1016/j.scriptamat.2008.01.050
|
30 |
Zhang C, Li X W, Gao M. Effects of circular oscillating beam on heat transfer and melt flow of laser melting pool [J]. J. Mater. Res. Technol., 2020, 9: 9271
doi: 10.1016/j.jmrt.2020.06.030
|
31 |
Wang T, Zhu Y Y, Zhang S Q, et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing [J]. J. Alloys Compd., 2015, 632: 505
doi: 10.1016/j.jallcom.2015.01.256
|
32 |
Xia Y L, Chen H N, Liang X D, et al. Circular oscillating laser melting deposition of nickel-based superalloy reinforced by WC: Microstructure, wear resistance and electrochemical properties [J]. J. Manuf. Processes, 2021, 68: 1694
doi: 10.1016/j.jmapro.2021.06.074
|
33 |
Liang Z L, Sun Z G, Zhang W S, et al. The effect of heat treatment on microstructure evolution and tensile properties of selective laser melted Ti6Al4V alloy [J]. J. Alloys Compd., 2019, 782: 1041
doi: 10.1016/j.jallcom.2018.12.051
|
34 |
Xiao H, Cheng M P, Song L J. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60: 216
doi: 10.1016/j.jmst.2020.04.043
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|