Please wait a minute...
金属学报  2021, Vol. 57 Issue (12): 1549-1558    DOI: 10.11900/0412.1961.2021.00140
  研究论文 本期目录 | 过刊浏览 |
粉末高温合金FGH4720Li在近服役温度下的组织演变规律
刘超1, 姚志浩1(), 郭婧2, 彭子超3, 江河1, 董建新1
1.北京科技大学 材料科学与工程学院 北京 100083
2.中国航发湖南动力机械研究所 株洲 412002
3.北京航空材料研究院 先进高温结构材料重点实验室 北京 100095
Microstructure Evolution Behavior of Powder Superalloy FGH4720Li at Near Service Temperature
LIU Chao1, YAO Zhihao1(), GUO Jing2, PENG Zichao3, JIANG He1, DONG Jianxin1
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.AECC Hunan Powerplant Research Institute, Zhuzhou 412002, China
3.Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China
引用本文:

刘超, 姚志浩, 郭婧, 彭子超, 江河, 董建新. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律[J]. 金属学报, 2021, 57(12): 1549-1558.
Chao LIU, Zhihao YAO, Jing GUO, Zichao PENG, He JIANG, Jianxin DONG. Microstructure Evolution Behavior of Powder Superalloy FGH4720Li at Near Service Temperature[J]. Acta Metall Sin, 2021, 57(12): 1549-1558.

全文: PDF(4697 KB)   HTML
摘要: 

利用场发射扫描电镜和萃取相分析等方法对FGH4720Li合金在600~730℃下时效3000 h过程中的组织演变进行了观察和分析。结果表明,γ'相最为稳定,而γ'γ'相则会发生复杂变化。600℃下时效时,合金组织无明显变化;在650℃下时效3000 h后,仅有γ'相发生长大,其他γ'相无明显变化;当时效温度升高到730℃,γ'相的长大速率加快,然后迅速粗化,时效200 h后,γ'相发生粗化,但B-γ'相会先发生Ostwald熟化现象,吸收大量γ'相而粗化,并且在300~500 h之间发生分裂,然后在500 h后通过互相聚合而粗化,而S-γ'相则始终通过互相聚合的方式来粗化。2种γ'相粗化行为的差异与γ'相的分布特征有关。

关键词 FGH4720Li粉末高温合金时效处理γ'组织演变    
Abstract

GH4720Li is used for turbine disks in a large number of civil and military propulsion systems because of its excellent mechanical properties and corrosion resistance. GH4720Li turbine disk is mainly manufactured through cast and wrought conventionally, but the addition of a high mass fraction of Ti, Al, and Mo can cause severe element segregation and more difficult microstructure control, which can become more severe as the turbine disk gets larger. Owing to this difficulty, the turbine disk quality cannot be guaranteed if the GH4720Li turbine disk is still in cast and wrought form, and the manufacturing process will be more complex, resulting in increased costs. However, the powder metallurgy method can efficiently eliminate element segregation and produce a more uniform microstructure than the cast and wrought methods. GH4720Li alloys manufactured using the powder metallurgy method are called FGH4720Li alloys. As there has been limited research on FGH4720Li and no report on the microstructure evolution during long-term ageing for FGH4720Li to date, it is necessary to study the microstructure evolution behavior during long-term ageing for FGH4720Li to obtain improved microstructure stability. In this study, field emission scanning electron microscopy and extractive phase analysis were used to investigate the microstructure evolution of FGH4720Li in the temperature range of 600-730oC up to 3000 h. The results showed that primary gamma prime was the most stable; whereas, secondary and tertiary gamma prime microstructure evolutions were comparatively complex. At 600oC, there was no microstructure change. At 650oC, only the tertiary gamma prime grew, but there was no microstructure change for the other gamma primes up to 3000 h. When the ageing temperature increased to 730oC, the tertiary gamma prime grew faster before coarsening rapidly. After 200 h, the secondary gamma prime coarsened noticeably, but the big secondary gamma prime coarsened by Ostwald ripening first, absorbing a large amount of tertiary gamma prime and splitting up between 300 and 500 h, before ageing with further processing. Big secondary gamma prime mainly coarsens by amalgamation; whereas, small secondary gamma prime always coarsens by amalgamation during ageing. The divergence between these two types of secondary gamma prime is related to the distribution characteristics of the tertiary gamma prime.

Key wordspowder superalloy FGH4720Li    ageing treatment    γ' phase    microstructure evolution
收稿日期: 2021-04-07     
ZTFLH:  TG146.1  
基金资助:国家重大科技专项项目(2017-VI-0017-0089);国家自然科学基金项目(51771017)
作者简介: 刘 超,男,1994年生,博士生
图1  标准热处理态FGH4720Li合金中不同γ'相的形貌及分布特征(a) γ'Ⅰ phase (b) distribution of different γ' phase(c) B-γ'Ⅱ phase (big secondary γ') (d) S-γ'Ⅱ phase (small secondary γ') (e) γ'Ⅲ phase
图2  FGH4720Li合金在600、650和730℃下时效3000 h后的γ'Ⅰ相特征
图3  FGH4720Li合金在600、650和730℃下时效500和3000 h后B-γ'Ⅱ相形貌特征
图4  FGH4720Li合金在730℃下时效不同时间后B-γ'Ⅱ相形貌特征
图5  FGH4720Li合金在600和650℃下时效3000 h后的S-γ'Ⅱ相形貌
图6  FGH4720Li合金在730℃下时效不同时间后的S-γ'Ⅱ相形貌
图7  FGH4720Li合金在600和650℃下时效500和3000 h后γ'Ⅲ相形貌特征
图8  FGH4720Li合金在730℃下时效不同时间后γ'Ⅲ相形貌特征
图9  FGH4720Li合金在不同温度时效时不同γ'相的尺寸变化情况及其数量变化趋势
ConditionLattice constant / nmCompositionMass fraction / %
600oC, 3000 h0.358-0.359(Ni2.73Co0.20Cr0.12Mo0.02W0.01Ti0.50Al0.41ZrTE)37.182
650oC, 3000 h0.358-0.359(Ni2.75Co0.19Cr0.12Mo0.02W0.01Ti0.49Al0.41ZrTE)39.737
730oC, 3000 h0.358-0.359(Ni2.74Co0.18Cr0.12Mo0.03W0.02Ti0.50Al0.41ZrTE)41.647
表1  γ'相的萃取相分析结果
1 Hu L X, Feng X Y. The research and development of powder metallurgy superalloy [J]. Powder Metall. Ind., 2018, 28(4): 1
1 胡连喜, 冯小云. 粉末冶金高温合金研究及发展现状 [J]. 粉末冶金工业, 2018, 28(4): 1
2 Zhang B J, Huang S, Zhang W Y, et al. Recent development of nickel-based disc alloys and corresponding cast-wrought processing techniques [J]. Acta Metall. Sin., 2019, 55: 1095
2 张北江, 黄 烁, 张文云等. 变形高温合金盘材及其制备技术研究进展 [J]. 金属学报, 2019, 55: 1095
3 Yu Q Y. Study on the correlation between γ' phases, grainsize and deformation parameters for GH4720Li alloy [D]. Beijing: University of Science and Technology Beijing, 2013
3 于秋颖. GH4720Li合金γ'相、晶粒度和热加工参数关联性研究 [D]. 北京: 北京科技大学, 2013
4 Silva J M, Cláudio R A, Brito A S E, et al. Characterization of powder metallurgy (PM) nickel base superalloys for aeronautical applications [J]. Mater. Sci. Forum., 2006, 514-516: 495
5 Jain S K, Ewing B A, Yin C A. The development of improved performance PM Udimet® 720 turbine disks [A]. Superalloys 2000 [C]. Pittsburgh: The Mineral, Metals & Materials Society, 2000: 785
6 Hattori H, Takekawa M, Furrer D, et al. Evaluation of P/M U720 for gas turbine engine disk application [A]. Superalloys 1996 [C]. Pittsburgh: TMS, 1996: 705
7 Kantzos P, Bonacuse P, Telesman J, et al. Effect of powder cleanliness on the fatigue behavior of powder metallurgy Ni-disk alloy Udimet 720 [A]. Superalloys 2004 [C]. Pittsburgh: TMS, 2004: 409
8 Barrie R L, Gabb T P, Telesman J, et al. Effectiveness of shot peening in suppressing fatigue cracking at non-metallic inclusions in Udimet® 720 [J]. Mater. Sci. Eng., 2008, A474: 71
9 Gabb T P, Telesman J, Kantzos P T, et al. Initial assessment of the effects of nonmetallic inclusions on fatigue life of Powder-metallurgy-processed Udimet 720 [R]. Washington DC: National Aeronautics and Space Administration, 2002
10 Gabb T P, Bonacuse P J, Ghosn L J, et al. Assessments of low cycle fatigue behavior of powder metallurgy alloy U720 [A]. Fatigue and Fracture Mechanics [C]. West Conshohocken, PA: ASTM International, 2000
11 Luo J, Bowen P. Small and long fatigue crack growth behaviour of a PM Ni-based superalloy, Udimet 720 [J]. Int. J. Fatigue, 2004, 26: 113
12 Luo J, Bowen P. A probabilistic methodology for fatigue life prediction [J]. Acta Mater., 2003, 51: 3537
13 Luo J, Bowen P. Statistical aspects of fatigue behaviour in a PM Ni-base superalloy Udimet 720 [J]. Acta Mater., 2003, 51: 3521
14 Prasad K, Sarkar R, Ghosal P, et al. High temperature low cycle fatigue behaviour of hot isostatically pressed superalloy Udimet 720 Li [J]. Mater. High Temp., 2010, 27: 295
15 Evans W J, Jones J P, Williams S. The interaction between fatigue, creep and environmental damage in Ti 6246 and Udimet 720Li [J]. Int. J. Fatigue, 2005, 27: 1473
16 Dubiez-le Goff S, Couturier R, Guétaz L, et al. Effect of the microstructure on the creep behavior of PM Udimet 720 superalloy-experiments and modeling [J]. Mate. Sci. Eng., 2004, A387-389: 599
17 Terzi S, Couturier R, Guétaz L, et al. Modelling the plastic deformation during high-temperature creep of a powder-metallurgy coarse-grained superalloy [J]. Mate. Sci. Eng., 2008, A483-484: 598
18 Wang X Q, Peng Z C, Zhang M C. Hot deformation behavior of AA-FGH720Li superalloy [J]. Mater. Sci. Forum., 2017, 898: 528
19 Pierron X, Banik A, Maurer G E. Sub-solidus hip process for P/M superalloy conventional billet conversion [A]. Superalloys 2000 [C]. Pittsburgh: TMS, 2000: 425
20 Hyzak J M, Singh R P, Morra J E, et al. The microstructural response of As-hip P/M U720 [A]. Superalloy 1992 [C]. Champion, PA: TMS, 1992: 93
21 Wu K X, Tan L M, He Y J, et al. Hot deformation behavior of P/M U720 Li [J]. Chin. J. Nonferrous Met., 2019, 29: 1676
21 吴凯西,谭黎明,何英杰等. 粉末高温合金U720Li的热加工行为 [J]. 中国有色金属学报, 2019, 29: 1676
22 He F, Wang W X. Microstructure and properties of as-hiped P/M Udimet 720 [J]. Powder. Metal. Ind., 2001, 11: 7
23 Rao G A, Satyanarayana D V V. Influence of HIP processing on microstructure and mechanical properties of superalloy Udimet 720Li [J]. Mater. Sci. Technol., 2011, 27: 478
24 Mao J, Chang K M, Yang W H, et al. Cooling precipitation and strengthening study in powder metallurgy superalloy U720Li [J]. Metall. Mater. Trans., 2001, 32A: 2441
25 Raids R, Schaffer M, Albu M, et al. Multimodal size distribution of γ' precipitates during continuous cooling of UDIMET 720Li [J]. Acta. Mater., 2009, 57: 5739
26 Masoumi F, Jahazi M, Shahriari D, et al. Coarsening and dissolution of γ' precipitates during solution treatment of AD730TM Ni-based superalloy: Mechanisms and kinetics models [J]. J. Alloys Compd., 2016, 658: 981
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[4] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[5] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[6] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
[8] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[9] 李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.
[10] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[11] 吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变[J]. 金属学报, 2020, 56(9): 1185-1194.
[12] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[13] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[14] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[15] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.